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We explain the relationship between global strings of the Abelian Higgs model and vortices in a
superAuid. We show that the nonrelativistic Magnus force law for vortices can be derived from global-
string dynamics, but only when an external background field has a special Lorentz-noninvariant con-
figuration 0' ~ e' . We present a self-consistent classical theory for relativistic Higgs vortices in a
superfluid, and show that superAuid vortices can be described as a system of spinning global strings.

PACS numbers: 98.80.Cq, 67.40.—w

A global string is a time-independent vortex solution
to the equations of motion of a spontaneously broken
global U(1) Higgs model. At low energies there is a sin-
gle massless degree of freedom in such models, the
Nambu-Goldstone boson a(x), defined according to

P= rie",
where p is a complex scalar field and ri its vacuum value.
As long as we stay away from the core of the vortex, of
thickness 8—I/ri, the Goldstone-boson classical dynam-
ics is governed by two conditions: that it obey the mass-
less wave equation and that it satisfy a constraint that it
vary from 0 to 2zn around any closed contour threaded
by n simple vortices. A straight global string at rest is
assumed to be a time-independent solution to the equa-
tions of motion with a proportional to the azimuthal an-
gle. In flat space the energy density of a global string is
—ri /r close to the core and goes rapidly to zero away.
In the vicinity of the string core, Eq. (1) breaks down,

0, and the energy density is —g".
It is generally accepted that global strings and nonre-

lativistic superfluid vortices are closely related; however,
the behavior of the two are quite different. For example,
a large closed ring of global string collapses and radiates
(Fig. 1); a ring of a fluid vortex does not. The discussion
here is intended to show that a global string behaves like
a vortex in a superfluid only in the presence of a special
background field.

Our work fills a gap in a body of theory which has pro-
gressed along two directions. One direction was based
on thin, structureless strings. The ground-breaking work
was that of Lund and Regge, ' who inferred the Kalb-
Ramond string action from the nonrelativistic force law
for a superfluid vortex. In this derivation no connection
is made with spontaneous symmetry breaking or the
Abelian Higgs model. Later Witten and Vilenkin and
Vachaspati showed that the static field of a Kalb-
Ramond string is on-shell equivalent to the Goldstone-
boson field of a global string, satisfying the topological
condition for a particular value of the coupling constant.

In a previous Letter we showed that the Kalb-Ramond
effective action can be derived from the spontaneously
broken Abelian Higgs model with a canonical transfor-
mation. Here we close the circle by deriving the super-
fluid vortex force law from the Higgs model.

We begin in the next section by explaining why global
strings are inadequate for modeling vortices in a super-
fluid. In section (2) we derive the relativistic force law
for a global string interacting with a background Gold-
stone-boson field, analogous to the Lorentz force law in

&=.10.6, z=O slice

FIG. 1. Computer plots of the collapse of an initially static
global string loop. The modulus of the scalar field is plotted
for a cross-sectional slice through the loop (Ref. 12).
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electrodynamics. In section (3) the solution which corre-
sponds to superAuids is conjectured, and then it is shown
that its nonrelativistic limit yields just the observed
Magnus force on vortices in a superAuid. In the con-
clusion we show how the Goldstone-boson field of a
superfluid vortex has a linear time dependence, and then
discuss some implications for cosmology.

(1) 1Vonrelativistic vortices in a superfluid. —The
nonrelativistic equations that govern vortex behavior in a
perfect incompressible superAuid at zero temperature are
the continuity equation and the Euler equation, and from
these one may derive the external Magnus force per unit
length on a vortex filament moving with velocity v
through a fluid which, except for the induced velocity
field v„due to the vortex, is assumed to be at rest:

F =pvx x. (2)

Here x points along the filament and

x= ~v, dl, (3)

for a contour threaded by the vortex. A fundamental
property of vortices is that x is independent of the con-
tour chosen as long as it remains threaded by one string
with the same orientation.

It is often said that the vortices in superfluid He are
similar to the global-string solutions of Eq. (1). Lund
and Regge' interpreted the dual of the Kalb-Ramond
field strength, H„=e„,i~" ~/6, as the velocity of a Iluid.
Since in the Higgs model H„=rid„a, this would mean
that the Goldstone boson Q is a velocity potential. If this
is true then the Magnus force per unit length on the core
of a global-string vortex might be estimated by using

density and a preferred reference frame. Far away from
a string the energy density, rather than going to zero,
goes to some nonzero value associated with the Auid.
Second, for superfluids the Magnus force is derived using
the fact that the vortex carries angular momentum.
Near a straight superfluid vortex at rest there is a veloci-

ty field moving circularly around it, carrying momentum
and kinetic energy. But in a similar configuration a glo-
bal string is a time-independent solution to the equation
of motion. The momentum density away from the string
core is

g BpQVQ,

which is zero in the rest frame of a straight global string.
In short, there seems to be a problem with thinking of

global cosmic strings as superAuid vortices. To under-
stand what is wrong we must first study the classical
theory of relativistic vortices.

(2) The Lorentz force law for vortices Whil. e—it is
possible to work with the Goldstone boson a(x) it is

more convenient to use an equivalent representation in
terms of a two-index antisymmetric tensor B„„defined
at distances far from the core of any vortices by rid„a

eq~8'8 ~/2. In Refs. 1 and 3-5 it was shown, using
the equations of motion and comparing at distances large
compared to the string core, that the interaction of the
vortex with the classical Goldstone-boson field is de-
scribed by an effective Lagrangian

X= —,
' H„, (x)H""(x)+8„,(x)j "'(x),

where H„,q =8„8,q+BqB„„+8,8i„and j"'(x) is a source
term nonzero only on the vortex worldsheet, defined by

(4) j"'( ) =2 q "8'[ —y(, )Jd "' (6)

and for the fluid density

p —n'/~'- n'.
Given the above, if there is a string segment with ra-

dius of curvature R initially at rest then the restoring
force per unit length tending to straighten the segment
out is f—rt /R. Setting the magnitude of the resulting
Magnus force equal to this gives a limiting velocity

It is possible to derive Eq. (5) rigorously from a global
Abelian Higgs model, with a canonical transformation,
uncovering as well the short-distance structure at the
vortex core. We take this action as our starting point.

We will derive the relativistic force law for the
response of a vortex to the local field 0"', analogous to
the Lorentz force law in electrodynamics. The equations
of motion for B"'are

v —I /2trrtR .
Hpvk .vX,

P (7)

It is then concluded that for qR»1 the global strings
are frozen into the vacuum, unable to oscillate freely,
just like superfluid vortices. A large closed loop at rest
in vacuum would not collapse.

Yet there are several inconsistencies with thinking that
global strings are like superfluid vortices. First, because
the energy density falls rapidly (—1/r ) to zero, far
from the core of a global string what one has is the vacu-
um. For superfluid vortices, however, the medium in
which the vortices move is a fluid with nonzero energy

and the stress-energy tensor is

e& =H&'&~„« ——,
' a&H'

0", is conserved by the equations of motion in the ab-
sence of sources. More generally 8„6"'=f', where f' is
an external force density. Using (7) and (8) and the Bi-
anchi identity we find the force law

Now consider a single isolated string, which may be
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Hijk j+&ijk (10)

This is rotation invariant but not Lorentz invariant.
From Eq. (8) the energy density and pressure in the ab-
sence of vortices are

@00 @ii

either closed or infinite. The field strength H"' may be
split into two parts,

HP vA, HP vA, +HP vX
self ext

and in the absence of external background fields the only
field is that produced by the string itself. It is easily
verified that for a straight string at rest with no back-
ground

fk —j HPvx —0

as it clearly must be. Lorentz invariance of the vacuum
implies there is no force if it is moving transversely ei-
ther. In contrast, a perfectly straight string moving
through a superfluid does feel a force. It can also be
verified from (8) that in the absence of a background
field there is no circulating flow of momentum around
the vortex, and hence k in Eq. (2) does not exist.
Straight global strings in vacuum do not feel the Magnus
force, Eq. (2).

If the string were not straight or isolated then there
would be forces acting on any particular segment be-
cause of string-string interactions. If again we assume
there is no background field, so that the only fields are
those due to the string sources, then as before the energy
density falls quickly to zero away from any string core.
For example, the condition H",„"t =0 implies that the field
of a single closed loop vanishes at large distances and
that the total energy of the system is finite. The force on
a segment is given by Eq. (9) using for H""~ the field
caused by other string segments —but this cannot be
considered a Magnus-type force. Any sensible generali-
zation of the Magnus force must reduce to Eq. (2) in the
special case of a straight isolated string, so this string-
string interaction with H",„'t =0 is not a suitable candi-
date. In the following we will describe a model with
H,"„'t &0 that does lead to the Magnus force in the nonre-
lativistic limit.

(3) Relativistic superfluids The fact t.
—hat the super-

fluid vortex is immersed in a Lorentz-noninvariant fluid
suggests that the correct model for superfluid vortices in-
volves choosing a special background field. Consider a
background

Using Eq. (7) to obtain

~ gmr —mr
sef g 2r

we find that there is now an induced energy-momentum
flux circulating around the vortex,

8 '=(p+p) =2' Jp

Integrating this around a contour threaded by the vortex
and dividing by the density gives a vorticity

a. = (4izri/Jp)m .

Now suppose the string is moving with respect to the
background. A straight string with constant transverse
velocity will again have no self-force. However, there is
an external force due to the background field interaction,

f=(0 f) f'= jpj

The fact that f =0 implies that it is a conservative force
similar to that on a charged particle in a magnetic field.

We would like to develop a fully Lorentz-invariant
picture, while still treating the vortex filament as an
idealized perfectly thin string. The worldsheet area in
Eq. (6) can be written

do "'= [u "m "—u 'm" ]d z do,

where ~ is the proper time of a point on the worldsheet, u

is its four-velocity with u =1, and a is defined so that
m = —1. Consistent with Eq. (11) we also define a
four-vector x" =(4izri/Jp)m". From Eq. (9) the force
per unit volume at that point becomes

f =4mrtu„m, H"" 5,
where 6 is a transverse two-dimensional delta function

a(x) = 8 [x y(o, z)—]dzdcr.

Assume a string segment of length L is approximately
straight. Taking a small cylinder around the segment,
integrating over the volume, and dividing by L gives the
net force per unit length

F"=4tzriu„m, H"" =cpu„x.„H"' .

Now assume also that other segments of string are far
enough away that the eff'ect of H„lf is negligible. In the
rest frame of the fluid we then find

This will be our model for a superfluid in its rest frame.
Consider a string at rest pointing in the I direction.

Unlike the cosmological vortex in vacuum, in this back-
ground the momentum density has a nonzero contribu-
tion

e0i j HOjk i

F =0, F=ypvxa.

In the nonrelativistic limit this reduces to the Magnus
force, Eq. (2).

(4) Conclusion The reason .w—hy global strings do
not behave like superfluid vortices is that global strings
live in a locally Lorentz-invariant vacuum. As a result
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there is no circulating flow of energy-momentum and
hence no fluid vorticity. Superfluid vortices are im-

mersed in a background Lorentz-noninvariant fluid with

energy density p and a fluid flowing around them. The
two objects can therefore be expected to behave quite
diN'erently.

We have shown, moreover, that the Magnus force law
in a superfluid can be derived from global string dynam-
ics in a specially chosen background field representing
the superfluid,

Hijk J &ijk

In the language of the Goldstone boson, this is equivalent
to putting

a =(Jp/rj)t

in Eq. (I ). A straight string along the z axis in this
background would then have

a =@+(Jp/rj)t,

where p is the azimuthal angle. We are thus led to a
very simple resolution of the question we set out to
answer: A superfluid vortex is a spinning global string

Superfluid vortices are known to exist in helium and
have been studied extensively. One of the basic proper-
ties of these real vortices is that the inertia of the core is
negligible and so the core responds instantly to motion in

the background fluid. The string moves as if frozen into
the fluid, much like magnetic flux lines in a plasma. We
can achieve this in our model if we spin the global string
fast enough.

Global strings are of cosmological interest and under-
standing them may be important for axion detection. ' "
Global strings in most early universe models are im-
mersed in a bath of radiation and matter with density
very much less than the density of the string core. The
component due to Goldstone-boson radiation, besides be-
ing of very low density, is an incoherent bath and will not
give a background of the type of Eq. (12). In other
words, such cosmological global strings would not be

spinning. They will oscillate and radiate and a loop ini-

tially at rest will collapse (Fig. I).
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