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Gravitational Lenses as Long-Base-Line Gravitational-Wave Detectors
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Gravitational waves produce a time delay between the diff'erent images of a gravitational lens. The
measurements of the time delay in the gravitational lens 0957+561 put new limits on the amplitude of
low-frequency gravitational waves h &2&&10 lv/(3X10 ' Hz)l in the frequency range 3X10
Hz ( v. Future measurements of the time delay in other gravitational lenses may permit this limit to be
improved.

PACS numbers: 04.80.+z, 98.60.Vx, 98.80.Cq

Gravitational waves (GW's) have been. detected in-
directly through measurements of the rate at which the
binary pulsar PSR 1913+16is speeding up. The devel-
opment of laboratory-scale interferometric and bar an-
tennae is proceeding at a rapid pace, and reliable GW
detectors may be only a few years away. The construc-
tion of large-scale GW antennae in space has also been
seriously proposed.

The diA'erent sources of GW's can be classified as be-
ing transient, periodic, or stochastic. The transient
sources are those such as supernova explosions in which
the GW's are produced by a single isolated event. The
periodic sources are rapidly orbiting systems like the
binary pulsar, which radiate GW's steadily over a long
period of time. The stochastic sources are events which
took place during the early history of the Universe, and
which produce a background of random gravitational
Auctuations. A period of exponential inAation in the ear-
ly Universe' and the gradual decay of a network of
cosmic strings are two examples of such stochastic
sources.

This paper shows how gravitational lenses can serve
as moderately sensitive detectors of the long-wavelength
part of this stochastic background. The sensitivity of
this type of detector is greatest at wavelengths compara-
ble to the horizon scale today, a range of frequency
which is inaccessible to laboratory or space-based instru-
ments. This low-frequency spectrum is of great interest
because an inAationary epoch in the history of the
Universe would leave its mark here. '

It is easy to see how a gravitational lens can serve as a
GW detector. The source is at a cosmological distance,
and its light reaches the Earth along two separated geo-
desics. Because of their enormous spatial length, these
two geodesics have a maximum spatial separation of
about 10 cm. Thus, they traverse different regions of
space-time. Now imagine that a GW is present. This
GW may be thought of as providing a sma11 redshift
along the path of one light ray, and a small blueshift
along the other path. The diA'erential redshift produces
a time delay between the images, and thus the measured
time delay can be used to place limits on the amplitude

of the GW.
Of course, there is also an intrinsic time delay between

the two paths, which is due to the curvature of space-
time and the geometry of the lens. Thus, it is possible
(but improbable) that the intrinsic time delay is very
large, but is almost completely canceled by the eA'ect of
a large-amplitude GW. In this paper, we make the
reasonable assumption that the intrinsic geometrical de-

lay is not much larger than the measured time delay.
This assumption can be tested in the future, when the
time delay of other gravitational lenses has also been
determined. It may be possible to remove the assump-
tion completely if one can measure the time delays in a
gravitational lens with more than two images.

One may think of the gravitational lens as a crude sort
of interferrometric GW antenna, of the type being
developed for laboratory experiments. In the laboratory
instruments, the two beams of light travel along perpen-
dicular paths to maximize the sensitivity of the instru-
ment. In the gravitational lens the sensitivity is de-
creased because the light rays do not follow perpendicu-
lar paths. However, the enormous length scales make it
a useful detector just the same.

We begin by considering the time delay between the
images of the gravitational lens in the presence of a
plane GW. For simplicity we consider a system in Aat

space rather than in an expanding universe. Because the
sources are at redshifts of order unity, this will give the
correct order of magnitude.

The redshift Z resulting from the GW along a given

path is given by the formula of Sachs and Wolfe,

1+Z =1+ 2, dt h je'e,
0

where t and t, are the times of observation and emission
of the photon, e' is a spatial vector pointing from the ob-
server to the source along the geodesic, the dot indicates
a derivative with respect to time, and the integral is tak-
en along the null geodesic followed by the photon. The
GW is in a transverse traceless synchronous gauge, so
that ho; =boo =h„,"=0.

We suppose that the source is at the origin, and that
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the observer is on the z axis. For a given wave vector k,
the gravitational metric perturbation can be expressed as
the real part of

h;, =[(u;u, —v;v, )h+ (u;v)+v;u, )h ]e'"'

where h+ and h x are the amplitudes of the two diff'erent

polarizations, co =
i
k i, x denotes the vector (x,y, z), and

8 is a real phase. The unit spatial vectors u and v are
defined by

u' =e't"kbz, /[kdkd —(Icdzd) &] ' &

v
' =e' 'kb u /(kd k ) '

Here e' ' is the antisymmetric unit tensor, and z is a unit
vector in the z direction.

The previous expression for a gravitational perturba-
tion is a standard one, usually written for a GW propa-
gating in the z direction. In our case, the GW is travel-

A

ing in the k direction, and we have written the usual ex-
pression with respect to a new orthogonal triad of vectors
(u, v, k).

For simplicity, we approximate the two image paths
by the four straight-line segments shown in Fig. 1.
These line segments lie in the plane y=0 and have
length L. The unit vectors pointing along the two direc-
tions to the images are denoted mi and m2, and the an-

gular separation between the two images is 2g. The
wave vector k is given in spherical polar coordinates by
the two angles 8 and p. The (x,y, z) components of the
various vectors are then

k =co(sin8cosp, sin8sinp, cos8),

u = (sing, —cosp, 0),
v = (cos8cosp, cos8sinp, —sin8),

ml =(—sing, 0, cosg), m2=(sing, 0, cosg) .

C'

X

along the two paths, which is given by the real part of

AZ= 2 EN h; e'eJdt —'

h; e'eJdt
4 path 1 ~ path2

These integrals can now be evaluated exactly. One ob-
tains the real part of

i J i JSiJI]I$ Sij ~2~2
i (co —k;m'() i (co k;m'2—)

i(co —k;m'i)L
l )( i(ru —k;ml)L

ib+imt,4Z —
2 Q)e

where

Sij = (u&'uj &' jv) hvy + (uj vj +vtuj') h x

FIG. 1. The path taken by two light rays in a simple model
of a gravitational lens. The small angular separation between
the two rays is 2g.

The quantity in square brackets is an odd function of g;
The GW creates a difference between the redshifts the remaining part of the expression is even in g. The

dot product between S;i and m& is given by

Sim'(m( =h+ [sin gsin p
—(singcos8cos(t+cosgsin8) ]+2h x singsinp(singcos8cosp+cosgsin8),

and the dot product S'jm2Nl2 is the same except that the sign of g is reversed. Expanding h,Z for small values of g, one
obtains the real part of

+,+c L(( —.o.e& . 2 coL( )
.

h
2sin(t

h

For a given fixed separation between the source and ob-
server, and a fixed plane GW, the diAerence in redshift
oscillates periodically in time t, = t —2L, with the
period co of the GW.

The connection between the differential redshift hZ
and the time delay between the two images is easily ob-
tained. Imagine that a series of pulses are emitted by
the source at regular intervals dt, . These pulses arrive at
the observer at regular intervals (dt )( along the first
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path and (dt )2 along the second path. The time delay
between successive pulses is related to the difference in
redshift by

d,Z = (dt, ) (/dt, —(dt, )2/dt, .

Thus the total time delay between the images seen via
the two paths can accumulate over the period of the
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GW:

AT=(t, )i —(t, )2= dt, AZ.

Evaluating this integral, one obtains for the time delay
between the two paths the real part of

AZ/tto+ATintrinsic ~

where AT;„„;„„,is the constant of integration. As dis-
cussed earlier, we assume that the intrinsic geometrical
part of the time delay is not much larger than the mea-
sured time delay, so we can neglect h, T;„&„„„,. The di-
mensionless fractional time delay AT/T is then obtained
by dividing this formula by T=2L, which is the total
light travel time from the source to the observer:

r

4g cos 6+cot, +toL(1 —cos8) ——sin (1 —cos8) sin8 cosPh~+ h
x . 2 MT 2 sing

NT 2 4 1 —cos0

We now assume that the background of gravitational
radiation at a given wavelength is isotropic, i.e., that the
amplitude of the radiation as a function of k depends
only upon the length of k and not upon its direction. The
phases 8 for the diAerent values of k are assumed to be
independent random variables, uniformly distributed be-
tween 0 and 2x. The amplitudes h+ and h & for diferent
values of k are assumed to be independent random vari-
ables, with vanishing mean values. The mean values of
their squares are taken to be zero except for wave vectors
k of a given fixed length, where the mean values of the
squares are taken to be a constant, independent of the
directions 8 and p. The mean value of h;Jh'J is then
given by

&h'h; &=&h )+&h &=h'

which serves to define the dimensionless gravitational
strain amplitude h.

The quantity (AT/T) can now be averaged over
phase 8 and over 4x solid angle in the direction of k to
obtain a mean-square value:

2

&(AT/T) 2)
" dB " diI)

I
sin8

d8
AT

2z" o 2z" o 2 T

In the averaging over the phase 8, the first cosine-
squared term appearing in the formula for (AT/T)
averages to 2 and so the dependence on the time t,
drops out. The average over p also gives a factor of —,'.
Thus setting s =1 —cosO one obtains

&AT/T&, , = & (AT/T) '& ' '
r

4 co Ts
sin (4s —2s )

NT 40 4
r 1/2

x &h+)+ &h'. & ds
S 2

If we assume that the gravitational background radiation
is unpolarized, then &h~) =&h~) =h /2. One then ob-
tains an rms time delay of the form

&AT/T), , = rthf (co T),
where the frequency response function f(x) is given by

2
- 1/2

f(x) =x ' „dssin [xs/4](2 —s)(s+4/s)

The function f(x) vanishes for small x & I like f(x) sx: x.
Thus the detector is not sensitive to wavelengths longer
than the overall size of the gravitational lens. For large
x ) 1 it falls oA' like f(x) ce (lnx) 't /x. This means that
the detector also loses sensitivity at short wavelengths.
The maximum value of f is f(3.7) = 0.41, and a typical
value is f(2m) =0.33. The detector is thus most sensi-
tive to wavelengths of the same characteristic size as the
gravitational lens.

Thus the rms fractional time delay due to GW's of fre-
quency co and amplitude h is given by

&AT/T), ~, = 2rth/to T .

This approximation is good provided that mT & x. The
sensitivity of the detector is thus reduced by a factor of q
from the sensitivity of a detector with perpendicular
arms.

The measured time delay of the gravitational lens
0957+561 is 415+ 20 days. The light takes about 10'
years to reach us, and thus AT/T & 10 ' . The angular
scale of separation of the two observed images is 2q =6.1

arcsec=3x10 rad. Hence one obtains limits on the
GW amplitude in the frequency range

3x10 ' Hz& v,

where the angular frequency co =2zv. In this frequency
range the dimensionless amplitude h is less than

h & 2x10
3x10 ' Hz

We have dropped the logarithmic term from this formu-
la, as it only changes the result by a small factor.

The only existing limits in this frequency range come
from the limits on the temperature Auctuations of the
microwave background radiation, which give h & 10
in the frequency range 10 ' Hz& v&10 ' Hz, and
h & 3x10 in the frequency range 10 ' Hz & v

&10 "Hz.
The improved bounds that we have given at lower fre-

quencies can be used to put new limits on the energy
density during axn inAationary stage of expansion in the
early Universe. Because the low-frequency amplitude of
the gravitational radiation scales as the fourth power of
the grand-unification scale M„, ' the existing bound on
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M„ is improved by a factor of 10 . One thus obtains
M & 5x10' GeV in the inflationary-universe models.
If gravitational lenses with smaller time delays and
larger angular separations are found, these bounds could
be further improved.
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