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Stochastic Manifestation of Chaos in a Fokker-Planek Equation
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We study the behavior of the Floquet spectrum for a Fokker-Planck equation describing a nonlinear
Brownian rotor driven by an angle-dependent dynamic external force consisting of two traveling sine
waves with amplitudes e~ and e2. For ez =0, the Fokker-Planck equation is separable (in the sense that it
has twp well defined eigennumbers) and the nearest-neighbor spacing distribution appears to be Poisson
random for small spacings. For both el~O and e2e0, we observed nonlinear resonance and level repul-
sion, indicating that the spectrum, at least locally, exhibits universal random-matrix-type behavior and
that information about the underlying dynamics of the Brownian particle is lost.

PACS numbers: OS.40.+j, 02.SO.+s, OS.4S.+b

The transition to chaos in conservative ciassical sys-
tems has been found to manifest itself in quantum phys-
ics as a transition in the nearest-neighbor spectral statis-
tics of the corresponding quantum systems. ' Chaos
occurs in conservative classical systems when resonance
zones overlap and destroy Kolmogorov-Arnold-Moser
(KAM) surfaces which are the remnants of global con-
stants of motion. In the corresponding quantum sys-

tem, the distribution of spacings between energy levels

(quasienergy or Floquet levels for driven systems)
satisfies a Poisson distribution (indicating a random dis-

tribution of levels) when the classical system is quasi-
integrable (dominated by KAM surfaces) because it is a
mixture of many independent pure sequences resulting
from a full set of quantum numbers. The spacing distri-
bution undergoes a transition to a Wigner or Gaussian
orthogonal ensemble (GOE) distribution characterized

by level repulsion when the classical system becomes
chaotic because constants of the motion (and hence good
quantum numbers) are destroyed by resonance overlap.
The transition in spectral statistics can occur in local re-

gions of Hilbert space and, as a result, qualitative
changes in the behavior of the eigenstates in those re-

gions can occur. '

In this Letter, we show that classical chaos appears to
manifest itself in stochastic physics in a manner very
similar to quantum physics. We consider a Brownian ro-
tor which consists of a spherical mass m with radius a at-
tached to a massless rigid rod of length L and zero radius
immersed in a fluid with shear viscosity g. The motion
of the rotor is constrained to lie in a plane. The
Langevin equation describing the Brownian motion of
this rotor is

yn+7, .„,(r)+V,„(e,—r),dn
di

where

'T,„(8,r) ='T
~ sin(8+ tor) +7'csin(8 —tpr),

0 =0 and 8 are the angular velocity and angle, respec-
tively, of the rotor at time v, I =rnL is the moment of
inertia, V'„„d(r) is the 8-correlated Langevin torque due

BP(8 t) t)

8t ae [e) sin(8+ capt)

8 P+ e2sin(8 —tppt )P]+
88

(2)

Thus, the behavior of the system is entirely determined
in terms of dimensionless parameters t. ), E2, and coo.

We shall use Floquet theory to rewrite Eq. (2) in the
form of an eigenvalue problem. The Floquet theory of
such systems was introduced in Ref. 9. We shall use a
slightly diA'erent form here. The probability density
P(e, t) satisfies the boundary condition P(e, t) =P(8
+2tr, t). Thus, we can expand P(e, t) in the Fourier
series P(e, t ) =g„- c„(t)e'" The equation . of

to the fluid, y =6xag is the Strokes friction, and

7,„(e,r) is the torque due to externally applied fields.
The random torque is 8 correlated,

('T„„d( )7„„d( ')&=2yk TB( —r'),

where T is the temperature, and k~ is Boltzmann's con-
stant. If we set y=0 and T,»d =0 in Eq. (1), we obtain
Newton's equation for one of the classic models used to
study the onset of chaos in both classical and quantum
systems. ' The two traveling sine waves induce a self-
similar set of nonlinear resonances in the phase space
and the classical version undergoes a transition of chaos
in the regions where the resonances overlap. The Flo-
quet spectrum for the quantum version of this system un-

dergoes a transition to Wigner-type spectral spacing dis-
tribution in a local region of the Hilbert when the reso-
nances overlap. Thus the quantum version of this mod-
el exhibits the quantum manifestation of chaos.

We shall consider this system in the limit of a very
large Stokes friction, so that the angular velocity of the
rotor relaxes to equilibrium on a time scale short com-
pared to the time scales associated with the external
torque, T,„(e,r) Then inert. ial eff'ects may be neglected
in Eq. (1) and the equation of motion for the reduced
distribution P(e, t) (in dimensionless units t =Dr,
cop =co/D, e; = r/yD, D =k&T/y) is given by the Smolu-
chowski equation
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motion for the coefficients c„(t) is given by

Cm

2

+e2(c le
' "—c +le+'"")].

(3)

(4)

Let us introduce the notation (m ic(t))=c (t) Th. en,
because Eq. (3) has time periodic coefficients, it will

have the following Floquet-type solutions:

(may(t))= g (mqiy)e ' "e ",

where the index i ranges over all Floquet solutions to Eq.
(4) and A; is the ith Floquet eigenvalue of the Fokker-
Planck equation. The Floquet coefficients (m, q i y;)
satisfy the following eigenvalue equation:

A;&m, q i y;& = P P &m, q i
'V

i n, q'&&n, q'
i y;&. (5)

The quantity 'N is the Floquet transition operator for
this stochastic process. It is the stochastic analog of the
quasienergy Hamiltonian in driven quantum systems. '

Its matrix elements are given by

(m, q i")V
i n, q') = ( —m +iqtop)b~ „—z m le&(&n, m —|~q',q+I ~n, m+l~q', q

—1)+e2(bn, m —l~q', q i ~n, ~+&~q', q+&)]

Thus, 'lV
i y;) =A; i y;). The Floquet transition matrix

(m, q i')V
i n, q') is infinite dimensional, complex, and not

self-adjoint under Hermitian conjugation. Thus its ei-
genvalues may be complex and its orthonormal right and
left eigenvectors, i y;) and (y; i, respectively, will not be
the same. The vector i y;) is the right eigenvector with
eigenvalue A;. We obtain the left eigenvector from the
equation (y; i

'V =(y; i A;. Thus the coefficients
c„(t)=(n

i c(t)) may be expanded in terms of Floquet
states as

(n i c(t)) = g g A;e ' (n, q i y;)e'
i 1q

(6)

where A; is determined from the initial conditions on
(nic(0)). It is clear from Eq. (6) that in the limit
ei~0 (j =1,2), A; A, = —m +iqtop Thus for.small
coupling the Floquet spectrum is indexed by two "eigen-
numbers, " m and q, which characterize the unperturbed
rotor and the degree of excitation of the external field,
respectively. For small e;, the external field, which is
harmonic, adds a strong rigidity to the imaginary part of
the spectrum. However, as the coupling increases this ri-
gidity relaxes somewhat.

The Floquet matrices for the cases (eieO, e2=0) and
(e|WO, ez&0) have quite different structure and spectral
properties. The Floquet matrix for the case
(elwO, ep=O) can be reduced to a block diagonal form
with an infinite number of infinite-dimensional blocks
along its diagonal. Each block connects only those states

i n, q) for which n+q =a, where a is a constant. [It can
be seen from the structure of (m, q i

')V
i n, q') given below

Eq. (5) that the states in, q) only connect to states
i
n+ l, q

—1) and i n —l, q+1).] Thus we can label each
block by its value of a given below Eq. (5). When (e& ~0
and e2 =0) the quantity n+q is conserved, whereas when
(el=0 and e2aO), n —

q is conserved. Thus the spec-
trum A; for the case (el&0, e2=0) is a mixed sequence.
It is the superposition of an infinite number of pure se-
quences, one pure sequence coming from each block.
For this particular system, the set of eigenvalues from
each block lies along a curved line in the two-

dimensional complex eigenvalue plane rather than being
scattered throughout a two-dimensional region in the
complex eigenvalue plane. Thus we expect to see a Pois-
son or random nearest-neighbor spacing distribution for
this spectrum characteristic of a random process on a
line rather than in a plane. The Fokker-Planck equation
is separable because even for strong coupling there are
two well-defined eigennumbers which label the eigenval-
ues, A;. One labels the block from which A; comes, and
the other labels its position in the sequence of eigenval-
ues coming from that block.

For the case (eieO, e2&0), there is no such infinite
decomposition of the spectrum. There are two sym-
metries which allow us to break the Floquet matrix into
block diagonal form with four blocks. These four blocks
are obtained as follows. Rewrite P(8, t) as

P(8, t) = g a„(t)cos(n8)+ g b„(t) sin(n8) .
n 0 n 1

The equations of motion for a„(t) and b„(t) completely
decouple due to the fact that 'T,„(8,z) = —7',„(—8, z)
yielding a two-block Floquet matrix. Each of these two
blocks, which we call sine and cosine blocks, further
decomposes into two blocks, one in which the states with

n+q odd are coupled and the other in which the states
with n+q even are coupled. All information about the
long-time behavior is contained in the cosine block.

For the case (el =e2=e&0), we have seen evidence of
nonlinear resonance and level repulsion. In Fig. 1, we
show the values of A; for coo=10 and three values of t.

(e=10.0, 10.2, and 10.5). For these values of e the
spectrum still contains a large degree of rigidity. We see
that with increasing values of e, the real part of the spec-
trum (the nonlinear part) appears to resonate and repel.
This resonance region runs down the real axis until it
reaches the lowest excited state and shifts the real part
of larger negative values. (This is the origin of the shift
in the real part of the Floquet eigenvalue observed in
Ref. 9.) If we increase e still further, the eigenvalues
remain shifted upward and become increasingly less rig-
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FIG. l. Distribution of eigenvalues in the complex plane for a 390x 390 Floquet matrix. Local level repulsion shows resonance-
like behavior. This resonance behavior appears to occur around e= m (Ref. 9). We use co =10.0 because it is visually more obvious
for larger co. (a) e =10.0; (b) e=10.2; (c) e=10.5.

id. This shifting of the Floquet eigenvalues causes a fair-
ly abrupt drop in the first-passage time for this system.
We have constructed the mean-first-passage time by put-
ting absorbing boundaries at 0=0 and z. We then start
the particle at 8=+/2. With this choice of boundaries
the Floquet spectrum for the first-passage-time problem
is determined by the sine block in our Floquet matrix.
The average first-passage time is given by

(T)=- — gg g a, — '. ', (7)
&n, q ~ y;1

i ] n & q
—oo 2 +i+lgNp

where the coefficient 8;(tr/2) can be determined from the
initial conditions on the Brownian particle. The shifting
to more negative values of the Floquet eigenvalues by the
resonances should cause a drop in the first-passage time.
In Fig. 2, we show the behavior of the first-passage time
[obtained numerically using the definition of the first-
passage time in terms of the coefficients, b„(t)l as we
vary t. for cop =1 and 10. We do indeed see the effects of
resonance. The eff'ect of resonance on the first-passage
time has also been noted, in a different context in Ref. 7.

We have also studied the spectral spacing statistics for
these two cases. For a Poissonian random process on a
line, the dimensionless nearest-neighbor spacing s (the
nearest-neighbor spacing divided by the average spacing)
satisfies a distribution Pp(s) =e, while for a Poisson
random process in a plane it satisfies the distribution
Pp2(s) =(n/2)se ' t . On the other hand, the spectral
spacing distribution for asymmetric random matrices
with Gaussian distribution exhibit cubic repulsion" and—Bs2satisfy a distribution of the form PRM(s) =As e
For a two-dimensional random matrix A =3 x 2 and
B=3 x2 ." For high-dimensional random matrices
Grobe, Haake, and Sommers" have shown numerically
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0.4—

0.0 ~ e v w w s r
1

10 100

FIG. 2. Plot of mean-first-passage time vs e for el
Here (T) (2/x) 'n(T'1, where (T') is defined in Eq. (7).

that PitM(s) is similar to that for two dimensions but lies
slightly below the two-dimensional case for small s and
above it for large s. We have computed the spectral
spacing statistics of the Floquet eigenvalues for the
Fokker-Planck Eq. (2) for the two cases (e~peO, e2=0)
and (e|&O,e2aO) for coo=1.0. In Fig. 3, we compare
the integrated spacing distributions, Ip; (s) =j o ds'
xPp;(s') (i =1,2) and litM(s) =fods'PaM(s') with the
values obtained numerically for the Brownian rotor for
a=9. We have diagonalized a 529x529 Floquet matrix
(n (23 and q ~ 23) for the case (e| =e,e2=0). In or-
der to avoid effects due to the finite size of the matrix,
only the lowest 130 eigenvalues are used in our analysis.
For tlie case (e|= e2 =e), we have diagonalized a subma-
trix of size 390&&390 (n (20 and q (20) and for the
same reason only the lowest 110 eigenvalues are used to
analyze the spectral statistics. We unfolded the spec-
trum by multiplying the level spacings, obtained from
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FIG. 3. Nearest-neighbor spectral spacing distribution for
too 1.0 for the case (el 9, e2 0) (open squares) and for the
case (cl e2 e) (filled circles). The filled circles represent the
average of the four cases e 8.5 8.75, 9.0, and 9.25. Also plot-
ted are the integrated spacing distributions, Ipi(s) (hatched
line), Ip2($) (dashed line), and IRM(s) (solid line).

statistics for the Fokker-Planck equation describing a
nonlinear Brownian rotor driven by an angle-dependent
dynamic external force consisting of two traveling sine
waves with amplitudes e1 and t..2. For the case F2=0, we
find that the Fokker-Planck equation is separable and
the small spacings appear to be Poisson randomly distri-
buted. For t..i&0 and e2&0, we see evidence of nonlinear
resonance and level repulsion of the small spacings, indi-
cating nonnonseparable behavior and loss from the spec-
trum of information about the dynamics of the Brownian
motion process.
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the eigenvalue spectrum of the Floquet matrix, by the lo-
cal average eigenvalue density. With this size matrix we

only expect to see strong distortions due to the finite size
of the matrix for e & 20. From Fig. 3 it can be seen that
the spectral distribution obeys diff'erent statistics for
these two systems. For the case of single resonance, the
spectral spacing statistics follows closely (except for dis-
tortions due to rigidity imposed by the harmonic part of
the spectrum) a Poisson random process for eigenvalues
lying on a line. For the two resonance cases, on the oth-
er hand, the spectral statistics approaches cubic repul-
sion for small spacings indicating loss of one of the
eigennumbers and information about the underlying dy-
namics governing the stochastic process.

In summary, we have studied the Floquet spectral
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