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Crossover Scaling from Multifractal Theory: Dielectric Breakdown with Cutoffs
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The dielectric breakdown model (DBM) is generalized to include lower cutoffs, which prevent growth
at low fields. The new models may represent realistic situations in some DBM and some viscous finger-
ing experiments. Multifractal theory is shown to provide quantitative predictions for the crossover from
the usual DBM patterns (at small finger sizes) to a new, spiky, behavior (at large sizes). For one of the
models, the theory also predicts when growth will stop. The predicted crossover scaling function is
confirmed by numerical simulations.
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For g=1, in two space dimensions the resulting aggre-
gates have a fractal dimension D=1.7, and look the
same as many of the above observed phenomena, ir-
respective of detat'ls. For ri =0, the results reproduce the
Eden growth model. The above two cases correspond to
real viscous fingers for fast and slow Bow rates, respec-
tively.

The fact that g uniquely identifies the universality
classes of DBM makes g analogous to parameters like n,

PACS numbers: 05.40.+j, 02.50.+s, 47.60.—i, 52.80.—s

Much of the recent interest in fractal growth phenom-
ena' has arisen because of the universal nature of the
observed patterns: viscous fingering in porous media,
dielectric breakdown, diffusion-limited electrodeposition
or growth in aqueous solutions, ' and diffusion-limited
aggregates all give rise to similar structures. A zeroth-
order approximation to these phenomena is provided by
the dielectric breakdown model (DBM): One solves the
Laplace equation V p =0 in the medium surrounding the
growing aggregate, with the boundary conditions & =0
on the aggregate and p = 1 on the surrounding (distant)
boundary; one calculates the gradients of p normal to the
boundary, V; = ~ (Vp); ~

=
~
(n Vp); ~

at the point i on the
boundary; and then one stochastically moves the bound-
ary at point i with probability

the number of spin components, or a, the power of the
decay of long-range interactions, in critical phenome-
na. ' As in critical phenomena, one would thus expect a
crossover between different universality classes to occur
whenever there exist competing interactions. For exam-
ple, a competition between the viscous and the capillary
forces might result in a crossover between the patterns
with g=1 and 0. In this Letter we show that such
crossover phenomena do indeed occur. Moreover, we

study the simplest examples of such a crossover and find,
to our surprise, that the theory of multifractal scaling"
can yield analytic predictions for details of the crossover.

We study two models. In "model I," we assume that
the jp;) have a lower cutoff, p„sothat there is no
growth at point i if p; ~ p, . The rest of the probabilities
are renormalized by p'=P~, )~ p; (i.e. , p; p;/p'). This
is a model where the pattern stops growing, as actually
happens in some DBM experiments. ' In "model II,"
the cutoff is on the gradients; i.e., there is no growth at
point i if V; (V, . Since the denominator in Eq. (1) has
a nontrivial dependence on the size of the aggregate (see
below), the two models have very different behavior.

Model II has two physical motivations. The first is the
introduction of a critical field, E„asa breakdown cri-
terion' in the DBM. It was noted recently' that such a
criterion leads to a crossover of the dielectric breakdown
pattern, when the pattern reaches a crossover radius R x
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(which depends on E,). Our analysis yields an explicit
analytic expression for the dependence of R & on E„
which differs from that conjectured (for the same model)
in Ref. 13. It would be very interesting to check this
dependence [Eq. (19) below] experimentally.

The second physical motivation is the introduction of a
capillary pressure into the problem of viscous fingering.
If the displacement is of a wetting fluid by a nonwetting
fluid, then the capillary pressure prevents the nonwetting
phase to enter a pore when the pressure is lower than the
local capillary pressure P, . ' In simulations of porous
media as a network of ducts, ' P, depends only on the
ducts' width via the Laplace law. Taking the radii of the
ducts to be constant all over the network, we conclude
that each bond will be active if the viscous pressure on it,
P, is bigger than P„andwill not be active if P & P, . We
see that the capillary pressure is the equivalent of the
critical field, and both are represented by V, in model II.
The crossover effects discussed here are expected in ex-
periments done at constant flow rate and may be absent
in experiments done at constant pressure. For technical
reasons, to be explained below, we find it easier to
demonstrate the essential new crossover phenomena in

model I, and then discuss our predictions for model II.
In order to understand the crossovers we consider the

exponents'

(2)a; = —lnp;/lnR,

where R is the radius of gyration of the cluster, and p;
are the growth probabilities for that particular cluster.
The exponents a; are bounded from below by

a;„—= —lnp, „/lnR, (3)

Thus, by definition f(at) =at equals the information di-
mension DI for the harmonic measure, which for con-
nected sets in 2D is generally accepted to be ' DI = l.2, 16

where p „
is the maximum probability. The total num-

ber of perimeter sites N is divided into subsets N, where
N, h, a is the number of sites i with a ~ a; & a+8.a.
From multifractal theory each of these numbers N,
scales with R,

N. (4)
which defines the function f(a). It is possible to reliably
calculate f(a) by averaging over several aggregates at
least for a ~ l. '

Based on this distribution we now calculate the proba-
bility P(a) that the growth takes place on some site
characterized by the exponent a. Since there are
N ~ R ' such points, each having growth probability
p a-R, we find

P(a) =N,p, ee R i' (5)
This is maximal when f'(a) =1, which defines a value
a =at. However, since Q,P(a) =1,f(a) ( a, which im-
plies that in the scaling limit (R ~)

P(a) 8(a —at) . (6)

Consider now model I. Since practically all growth
&I —1takes place on sites with probability pl ~R =R

the usual DBM-type growth is not affected before pl
reaches the cutoff value p, . Our analysis therefore pre-
dicts that the crossover takes place when pl=@„i.e.,
when the cluster radius reaches a crossover value

R ~p, (7)
To test the prediction (7), we produced several DBM

aggregates with the model-I cutoff. For each value of p,
we (at given values of R) found the average mass M(R)
over twenty aggregates. We performed simulations with

g =1, on a square lattice, and the external boundary was
set on a circle at radius L = 100. The solution to
Laplace's equation was determined with a relative accu-
racy of 1%, and the growth of the aggregate was stopped
when it became close to the external boundary
(R/L =90%). Examples of the growing aggregates are
shown in Fig. 1. For very small p, (p, (0.002 in our ex-
ample), we observe only the usual DBM structure, with
D=1.7 [Fig. 1(a)]. For intermediate values of p„there
is a crossover to a spiky structure, with D =1 [Fig. 1(b)],
for radii larger than a crossover radius, Rx. After the
crossover, the growth is in a narrow regime of probabili-
ties between p, and p,„,which corresponds to growing

(c)

(b)

FIG. 1. Dielectric breakdown patterns with a growth proba-
bility threshold p, . (a) p, =0.001. The aggregate looks like
the usual DBM aggregate (p, =0). (b) p, =0.006. A cross-
over from the usual DBM structure to a spiky structure is ap-
parent. (c) p, 0.06. The growth stops before the aggregate
hits the boundary.
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R, if R(Rx,
R~+A(R —R~), if R & Rx,

(9)

on the tips. The spiky structure corresponds to ri=~,
when only one tip grows, and the growth of the aggre-
gate was stopped when it became close to the external
boundary (R/L = 90%). For larger values of p„allthe

p; became smaller than p, even before the aggregate got
close to the boundary (in our example this happens for
p, &0.02). In this case growth stops [Fig. 1(c)] at a
finite radius R,„.

With p, in the range 0.002 &p, &0.02, we observe a
crossover. For R &Rx, the mass scales with R accord-
ing to the mass dimension for the usual DBM structure,
i.e.,

M(R) CLRD, (s)
where D=1.7. Above R„,M(R) approaches a linear

dependence on R. This behavior is in accordance with

the spiky structure above the crossover, and M(R) can
be well approximated by the simple behavior
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where A depends on R x. Changing p, changes the value
of R, . Next we plot V=—M(R)R against x =—Rp„
with D=1.7, for different p, values [Fig. 2(a)). The
good data collapse shows that the simulations are in

agreement with the theoretical prediction (7). The devi-
ations at inaximal R values (R = 100) are due to bound-

ary effects not included in the scaling function V(x).
In the crossover region, the mass of the aggregate can

be fitted by a universai crossover function,

M(R) =R P(Rp, ), (io)
as shown in Fig. 2. From (9) we conclude that the scal-
ing function P(x) has the form

const, if x &x„
P(x) =' (»)ax+b x D, if x&x„

where the constant is found from Fig. 2(a) to be = 3.1.
To determine a and b we have in Fig. 2(b) plotted
P(x)x, i.e., Mp, ' vs x=Rp, . We find a=0.62 and
b = —0.014; hence x, —=R xp, = 0.05. The deviations
from the straight line for large x [Fig. 2(b)] arise again
from boundary effects. We emphasize, however, that al-
though boundary effects are present for radii well below
the radius of the final cluster (R/L =90%), these effects
are not important at R&. This is especially clear in Fig.
2(b), where no boundary effects are apparent for
x &0.25, which is to be compared with the 5 times
smaller value of x, defined above.

Consider further the behavior for R & R x, where the
fractal DBM nature is broken leaving a one-dimensional
spiky structure. If the boundary is sufficiently far away,
the growth continues until p, x reaches p, . To find
where the growth stops, i.e., to find R,„(p,), we must
therefore find the behavior of

0. 1
(b)

0 0.2 0.4 0.6 0.8 1.0

where V,
„

is the maximal gradient, V,„—=max;[V;].
Note that only the denominator scales, while V,

„
is al-

ways of order 1. ' Hence,

gV;~R "". (i3)

When the mass M grows to M + 1, this sum changes by

A+i V; hg;V(/hR, . D

hM hM/AR
(i4)

Reaching R&, this derivative has a value ~p,
Furthermore, a growth on a spiky tip does not infIuence
this derivative, which approximately stays equal to the
derivative at the bottom of the spike, i.e., at the cross-
over. We conclude that above the crossover, g;V; in-
creases linearly with mass. Since the mass increases
linearly with size,

+min
—D —

1
pmax ~pc

At R =Rmax~ pmax pc, which gives

Rmax~pc '" (i6)

(is)

FIG. 2. (a) Scaling function P=—MR vs x =—Rp„where
D 1.7. The plot is double logarithmic in order to magnify the
crossover region. (b) P(x)xD=Mp, '7 vs x=Rp, . The straight
line ax+b has a 0.62 and b —0.014. Four values of p, are
shown: 0.004 (diamond), 0.006 (square), 0.008 (pius), and
0.010 (cross).

2007



VOLUME 63, NUMBER 19 PHYSICAL REVIEW LETTERS 6 NOVEMBER 1989

Adopting Qmin

—2
Rmax ~pc

In our numerical simulations, we find systematic devi-
ations from Eq. (17) when the growth stops too close to
the boundary. There were too few values of p, for which
this did not happen, and therefore we were unable to ob-
tain an accurate check of (17). Forcing all the data into
R,„~p,' yields s =2.2+ 0.2.

In model II, the crossover is imposed by a cutoff in the
gradient: There is no growth if V; ~ V„and the "surviv-
ing" probabilities are renormalized, p; p;/p, where
p=gv, ~v p;. Unlike model I, the growth will not stop
(before the boundary), since V,

„
is of order 1. ' Here,

the scaling analysis predicts the crossover to occur at a
distance R x where

Vt —=ptZV;

reaches V, . Using (13), Dt =1, and a;„=D—I, we ob-
tain

(i9)

For the DBM, where D=1.7, the exponent in (19) is
= 3. This means that the region where the crossover is
apparent is predicted to be much smaller for the gradient
cutoff' than for the probability cutoff'. We have per-
formed simulations for various values of V, . Our results
show the range of values of V, in which the crossover is
apparent (for the crossover from the usual DBM struc-
ture to a spiky structure) is indeed much narrower. For
this reason we have not been able to measure a reliable
numerical value of the crossover exponent. Furthermore,
for small values of V, we observe a wide range of radii,
where the produced patterns are neither DBM-like nor
spiky. This is, however, consistent with a description of
model II in terms of a crossover function 5', i.e.,
M(R) =R Q(RV,'t ). Since the exponent 1/(2 D)—
is large, a small variation of R for large values of V, cor-
responds to a very large variation of R for small values
of V, . This effect makes the detection of the crossover
radius and the associated exponent dificult. In contrast,
the crossover exponent in model I is 1, which makes the
numerical determination of the crossover easier.

In the context of viscous fingering in porous media,
model II suggests that the DBM structure may eventual-
ly cross over to a spiky structure at low pressure. In par-
ticular, in relation to the phase diagram proposed by
Lenormand and co-workers' we speculate that even for
small viscosity ratio, the DBM structure will eventually
cross over to a spiky pattern.

In conclusion, we have treated the crossover phe-
nomenon in DBM imposing a cutoff' p, in the probability
(model I) or V, in the gradient (model II). We have
shown the existence of a crossover from the usual DBM-
type to a spiky-type aggregate, i.e., the crossover from

g =1 to the g =~ universality class. For the probability
cutoff' we find that this crossover takes place at a dis-
tance Rx(p, ) ccp, ', while the growth continues to a
distance R,„(p,) eel, when boundary effects can be
neglected. For the gradient cutoff we find the crossover
radius to scale according to R x (V, ) cx' V, 'lt

The exponents can be understood from multifractal
analysis, based on the equations DI =1 and a;„=D—1,
where the latter equation is believed to be of general na-
ture, e.g. , valid for all g. For general g we find
R x (p, ) tx:p, ', R~„(p,) cr- p, ' for model I.
For model II, the crossover exponent is I/(Dt+ I —D).
In particular, all exponents diverge in the g=~ limit
(D =1, Dt =0).

The observation that pr dominates the growth in the
scaling limit suggests a general way of obtaining ex-
ponents for crossover phenomena similar to those de-
scribed above. Thus, although our new description is ap-
plied to simple models, we believe that it can be taken
much further to explain a number of observed crossover
phenomena. To this end we urge, in particular, more ex-
perimental studies.
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