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In the standard hierarchical scheme the daughter state at each step results from the fractional quan-
tum Hall effect of the quasiparticles of the parent state. In this paper a new possible approach for un-
derstanding the fractional quantum Hall effect is presented. It is proposed that the fractional quantum
Hall effect of electrons can be physically understood as a manifestation of the integer quantum Hall
effect of composite fermionic objects consisting of electrons bound to an even number of flux quanta.

PACS numbers: 73.50.Jt, 73.20.Dx

Even though the experimental observations of the in-
teger' and the fractional®> quantum Hall effect® (QHE)
are essentially identical, except for the value of the quan-
tized Hall resistance, there are, roughly speaking, three
different theoretical schemes for their explanation.
While the integer QHE (IQHE) is thought of essentially
as a noninteracting electron phenomenon,* the fractional
QHE (FQHE) is believed to arise from a condensation
of the two-dimensional (2D) electrons into a ‘“new col-
lective state of matter”> as a result of interelectron in-
teractions. Even within the FQHE the “fundamental”
fractions +,+,... play a special role and the other frac-
tions are obtained in a hierarchical scheme® in which a
daughter state is obtained at each step from a condensa-
tion of the quasiparticles of the parent state into a corre-
lated low-energy state.

The purpose of this Letter is to present a theoretical
framework which enables an understanding of both the
IQHE and the FQHE in a unified scheme as two
different manifestations of the same underlying physics.
It is argued that the possibility of QHE at fractional
filling factors p/ (2mp % 1), where m and p are integers,
arises because the correlations in the phase factors at
these filling factors are very similar to the correlations
present at integer filling factors p. This approach not
only gives all the observed fractions (except’ 3, which
therefore requires some additional physics®), and ex-
plains in doing so why only fractions with odd denomina-
tors are observed, but also provides the order of their sta-
bility, in agreement with experiments. Furthermore, it
suggests a generalization of the Laughlin wave functions
to other fractions.

I start by proposing a remarkably simple picture for
understanding the origin of the FQHE. The important
parameter is the ratio of the total number of flux quanta
(po=nhc/e) to the total number of electrons, which is the
inverse of the filling factor v (in the thermodynamic lim-
it) and specifies the average number of flux quanta avail-
able to each electron. Consider a 2D electron gas in the
presence of a transverse magnetic field at an integer
filling factor v=p, so that there is an average flux ¢o/p
per electron. The electronic wave function ¥+, (*

corresponds to magnetic field in the ¥z direction) in
this situation is rather insensitive to the details of the in-
terelectron interactions and is determined mainly by vir-
tue of the fermionicity of the electrons. Thus, the long-
range correlations due to the Fermi statistics provide ri-
gidity to the electron system at integer filling factors
which results in the phenomenon of IQHE. It is useful
to think in the path-integral language:® The partition
function gets contributions from the closed paths in the
configuration space (for example, a path in which one
electron moves in a loop while the others are held fixed,
or a cooperative ring exchange path®). The phase associ-
ated with each closed path has two contributions: the
Aharonov-Bohm phase which depends on the flux en-
closed in the loop, and the statistical phase which de-
pends on how many electrons participate in the path. An
incompressible state is obtained at integer filling factors
presumably because of some special correlations (which
may not be easily identified) built in the phase factors
corresponding to the various paths. Now attach to each
electron an infinitely thin magnetic solenoid carrying a
flux ago (pointed in the —z direction). For lack of a
better name, we term an electron bound to a flux tube a
“composite particle.” As is well known,'? the statistics
of the composite particles is in general fractional, and is
such that an exchange of two composite particles pro-
duces a phase factor (—1)'*® (Ref. 11). The relevant
case here is when « is equal to an even integer (a=2m),
and the composite particles are fermions. It is easy to
see that in this case the phase factor acquired along a
given closed path is identical to the phase factor acquired
in the absence of the flux tubes, implying that the corre-
lations in the phase factors for ¢ =2m are the same as
those for a =0. Since these correlations are responsible
for rigidity and QHE at integer filling factors, one can
expect the composite fermion state \ng',,, which is ob-
tained by adding to each electron in ¥ +, a flux 2mgo, to
also be rigid and show QHE.

To determine the filling factor of \Pg_{”,, we exploit an
ingenious observation due to Arovas et al. ' and Laugh-
lin:'"'" A (uniform) liquid of electrons, each carrying
with it a flux ayy, is equivalent, in a mean field sense to
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a (uniform) liquid of electrons in a magnetic field of
strength such that there is an average flux of a¢o per
electron. A uniform electron density is required to pro-
duce a uniform flux density. Since in the state ¥¥7,
there are a total of 2m +p ~! flux quanta per electron,
we identify it with the mean-field state of electrons at
fractional filling v=p/(2mp +1). It must be borne in
mind that the true electron state is not as rigid as the
composite fermion state, because in the true state the
flux tubes are not strictly bound to the electrons, and the
phase factors simulate IQHE only on average. However,
provided that the true electron state is also incompressi-
ble, the composite fermion state should provide the
correct description of the essential physics at the mean-
field level, as it contains the correlations giving rise to
the incompressibility. On the other hand, when the true
electron state is not incompressible, identification of the
composite fermion state with the mean-field state of the
electrons is no longer valid, or meaningful.

Thus in this approach there are two types of correla-
tions essential for FQHE. The first type of correlations,
which have been widely appreciated in the field,'>!3 in-
volve binding of electrons and zeros of the wave function,
or, equivalently, of electrons and flux tubes, which is a
very useful way of incorporating the effect of repulsive
interactions. Thus the role of repulsive interactions in
the present framework is assumed to be to generate com-
posite fermions. The second type of correlations, that
impart rigidity to the composite fermion system and thus
lead to FQHE, are the correlations due to their Fermi
statistics. These are included in the present scheme by
mimicking the statistical correlations present in the
noninteracting electron system at integer filling factors.
This is the central idea of this work; it is best summa-
rized by saying that the FQHE of electrons is a manifes-
tation of the IQHE of composite fermions.

The Hall plateaus at fractional filling factors appear in
this model precisely as at integer filling factors except for
the trivial modification that now each electron carries
with it 2m flux quanta. Following the argument of
Laughlin and Halperin® consider a corbino disk
geometry. The Hall resistance is related to the charge
transported from one edge to the other as one flux quan-
tum is adiabatically pierced through the center. At in-
teger filling factor p, p electrons are transported across
the sample in this process. For \Ilzi’",,, as each electron
carries 2m flux quanta, one must supply 2mp additional
flux quanta (in all 2mp =1 flux quanta) to transport p
electrons across the sample. This gives Ry =h/ve? with
v=p/(2mp £ 1). Just as in the IQHE, sample impuri-
ties and inhomogeneities create localized states, which
produce a quantized Hall plateau so long as the Fermi
level lies in a mobility gap.*

The stable fractional filling factors obtained in this
manner are p/ (2mp £ 1), and due to electron-hole sym-
metry, 1 —p/(2mp £ 1). [As indicated by Haldane®'
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this implies possible stability at fractions n+p/
@2mp=+1) and n+1—p/(2mp £ 1) in the nth Landau
level (LL).] Notice that only fractions with odd denomi-
nators appear. In fact, in the present framework QHE
at fractional values of v with odd denominators is as nat-
ural as the QHE at integer values of v. Besides explain-
ing the “odd denominator rule,” we are also able to pre-
dict the order of stability of the fractions, or the order in
which new fractions should appear as the sample quality
is improved. Since a collapse of the gap due to an “un-
binding transition” is more likely for larger values of m,
if a fraction p/(2mp £ 1) is observed for a given p then
all fractions p/ (2m'p £ 1) with m' < m must also be ob-
served. One also expects weaker correlations for higher
values of p. Thus in Fig. 1 a given fraction in the right
(left) half is more stable than the one directly above it
and the one on its right (left). This is quite generally
borne out in experiments.”!*~!7 This also identifies the
fractions to be observed next, if any, as the sample quali-
ty is further improved. Read'® has pointed out that the
fractions obtained here are only the first level of a new
hierarchy, and all other fractions with odd denominators
can be obtained within the present formalism. However,
it is interesting to note that all the observed fractions, ex-
cept i+ and {5 (Ref. 19), are obtained in this scheme at
the very first level, which is to be contrasted with the
standard hierarchy in which one needs to go down many
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FIG. 1. The fractions p/(2mp+1) and p/(2mp —1) are
shown in the right half and the left half, respectively. The
filled circles show the fractions that have been observed in the
lowest LL. The predicted values of the next most stable frac-
tions at this level are shown near empty circles.
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levels in order to obtain some of the observed fractions.
It is also worth mentioning that the present scheme natu-
rally produces the experimentally observed sequences’ '’
of fractions converging to 3 (for m=1), to + (for
m=2), to + (hole analog of ), etc.

In the following I will construct explicit trial wave
functions, analogous to the Laughlin wave functions,
which have the correlations discussed above. The Ham-
iltonian for N noninteracting electrons (N— o) at
filling factor p is given by Ho=X}=(2m.) ~'(p,
+eA;/c)?, where A; is chosen so as to produce a uni-
form magnetic field in the = z direction of strength such
that there is an average flux of p ~'¢o per electron. The
corresponding ground-state wave functions are ¥ + , with
¥_,=v¥%,. We first consider the fractions p/(2mp+1)
which are obtained by starting from ¥4,. Gauge flux
tubes 2m¢o are attached to each electron by adding to
the vector potential A; a singular gauge potential '*!!

¢
A 2m an(éj)vje,k ,
where 8 is defined by (z;—zx)=|z; —zx |exp(ij),
and z;=x;+iy; denotes the position (x;,y;) of the jth
particle as a complex number. The new ground-state
wave function is'!

Clearly this is not an appropriate wave function for
describing the FQHE of electrons. Following the analo-
gy of the Laughlin wave functions, and for the reasons
mentioned below, we write instead the following closely
related (unnormalized) trial wave function

vim=Z"y,,,

where Z*=]]; <« (z; —zx)“. This wave function has the
same topological structure as dﬁ'g, and also describes
electrons carrying gauge flux tubes of strength 2m¢o. In
this state addition of flux tubes is accompanied by a
change in the size of the system in such a way as to keep
the total flux per unit area (i.e., the magnetic field) con-
stant.

This state has the following properties: (i) For p=1,
¥ is identical with the corresponding Laughlin state.’
(ii) Since ¥+, is determined almost completely by the
Pauli principle, and has little dependence on interelec-
tron interactions, \113.",“, is also largely insensitive to the in-
teractions. This is explicitly the case for the Laughlin
states® which have been found to be very accurate for a
variety of interelectron interactions. (iii) It describes an
electron gas of uniform density. This follows straightfor-
wardly from the fact that ¥, describes an electron gas
of uniform density. It is also an eigenstate of the angu-
lar momentum. (iv) One can read off the filling factor
from the wave function. Take ¥4, with p LL’s com-
pletely occupied in a disk-shaped region; the number of

occupied single-particle states in each LL is N/p. Since
the largest power of a z; in Z>" is 2m(N — 1), ¥3" has
2m(N—1)+Np ~! single-particle states occupied in
each LL, which immediately yields a filling factor
p/2mp+1) in the thermodynamic limit. Thus the state
v¥7 (unlike ®%7) satisfies the fundamental requirement
that the filling factor obtained by counting the total
number of states agrees with that obtained from the
flux-counting argument (i.e., the number of flux quanta
piercing the sample is equal to the number of single-
particle states in each LL). (v) The factor Z>" in ¥37
partially projects the single-particle states of the higher
LL’s into the lowest LL. Write
N/pp—1
i =AZZ'"_1-II ; 0§1,j—1(21+j),
j=1i=

!
G =Qr2! 1) " V2 1214 [21] z%e " 2172
’ oz

where A is the anitsymmetrization operator, {; ; are the
single-particle states, /=0,...,p—1 is the LL index,
and s=0,...,N/p—1 is the angular momentum quan-
tum number. Z2" is a sum of terms of type I'I}V=lz}’
with X;t;=mN(N—1), where t; is typically a large
power (in the thermodynamic limit) of order mN. Thus,
in each term of \Ifi'z the coordinate z; of a particle ap-
pears as the product z/¢; (z;). For ¢, of order mN, this
product lies almost entirely in the lowest LL. Expanding
it as a sum of single-particle states,

!
I.
2781s= 2 akls+i,+k—1
K=0

one can show that the ratio ax+1/ax is of order 1/~/N; ;
i.e., the amplitude of z,'-’é‘[_s (z;) is smaller by a factor of
order 1/v/N in each successively higher LL. Thus in
v3" the amplitude is expected to be in general much
larger for the terms which have a greater number of the
lowest LL states occupied. Furthermore, there are mani-
festly terms, with extremely large amplitudes, which
have only the lowest LL occupied. This implies that, un-
less there are some very strange cancellations, the state
\Ifi’; lies predominantly in the lowest LL in the thermo-
dynamic limit. (vi) Last, ¥37 is expected to be a good
variational state in the presence of repulsive interactions,
because both the factors Z>™ and ¥+, are very efficient
in keeping the electrons apart. This is a direct sense in
which the correlations of the higher LL are utilized to
obtain a low-energy state. Thus we believe that the
states w37 possess all the necessary properties of a
reasonable trial state. At present we are working to-
wards a quantitative test, which is complicated due to
the complex structure and the inherent thermodynamic
nature of these states. The form of the incompressible
state at v=p/(2mp — 1), which is obtained starting from
¥ _,, is not as obvious.

Normally the ground state is expected to be complete-
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ly spin polarized, and is obtained by choosing in ¥ +, the
p lowest LL’s with the same spin orientation. However,
when the spin splitting is insignificant, it may be useful
to consider situations in which y +, has LL’s with both
spin orientations occupied, so that in \Ifgf'p the two lowest
spin-split Landau bands are occupied. Thus, for small
spin splitting, there are in general many candidates for
the incompressible state'>!'42° for a given fraction: the
completely spin polarized states, spin unpolarized
states, '2!* and partially spin polarized states.

There seems to be a close analogy between the com-
posite fermion states proposed in this paper and the stan-
dard hierarchical states. To illustrate this, we consider
the example of the + state which is obtained by multi-
plying ¥4+, by Z2. It can be shown?!' that the state ¥,
with one hole similarly produces the 3 state with a
Laughlin quasihole. By analogy, the i state with a
quasielectron would be obtained by multiplying by Z?
the state with the lowest (/=0) LL fully occupied and
one electron in the /=1 LL. The state with fully occu-
pied lowest LL and & electrons in the /=1 LL then cor-
responds to the § state with & quasielectrons. Thus the
£ state can be viewed in the present approach as the ¥
state with N/2 quasielectrons, and similarly the 3 state
can be viewed as the % state with N/3 quasielectrons.
This assignment is in exact agreement with that of the
standard hierarchy theory.® One can also show that the
quasiparticles described above have the same charge as
those in the standard scheme.?! The analogy is, howev-
er, not complete. In the standard picture stability is ob-
tained when the quasielectrons form a Laughlin-type
state, whereas in the composite-fermion scheme they
derive their arrangement from the higher LL. Also, tak-
ing the above example, in the standard picture one can
obtain both the & and the 5 states from the % state,
whereas the composite-fermion approach does not yield
the experimentally unobserved 5 state at this level.

In conclusion, this paper proposes that the FQHE can
be accessed from the IQHE by adding an even number
of flux quanta to each electron. This analogy between
FQHE and IQHE suggests a natural generalization of
the Laughlin states.

I thank N. Read, D. Stone, S. Kivelson, A. Mac-
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helpful conversations.
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