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Probability Distributions in High-Rayleigh-Number Benard Convection
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A theory of probability distributions of temperature in high-Rayleigh-number turbulent Benard con-
vection is presented.

PACS numbers: 47.25.—c

Recent experiments on high-Rayleigh-number (Ra)
Benard convection conducted at the University of Chi-
cago' uncovered a new, previously unknown transition
between two qualitatively different states of turbulence:
At Ra~ 4x10 ("soft turbulence" ) the dependence of
the Nusselt number (Nu) on Ra was found to obey the
classical 3 law, Nu~Ra' . The Nusselt number is
defined as the ratio of the heat flux in turbulent flow (H)
to the heat flux in the conductive regime: Nu =HL/x'4,
where x is the heat diffusivity, L is the distance between
the top and bottom plates, and 6 T2 —T~ is the tem-
perature difference between the plates. At Ra)4x10
("hard turbulence" ) another dependence was observed:
Nucx:Ra~, with p=0.282+ 0.006. This effect was un-
derstood when it was realized that in the hard-turbulence
regime the "wind" originating from the energetic large-
scale coherent vortex influences the hydrodynamic stabil-
ity of the thermal boundary layer, thus modifying the
mechanism of turbulence production. ' In subsequent
experiments on convection in a water tank the role of
the wind has been further clarified: It has been shown
that turbulence at Ra~ 10 is mainly produced by the
plumes emitted by the unstable boundary layer into the
bulk of the How. These plumes can be visualized as rela-
tively long flexible structures with a diameter b=B~ (b~
is the width of the thermal boundary layer) and with
length L=L; (L; is the integral scale of turbulence).
The typical velocity of a plume is v3=v„, where v„ is the
velocity of the wind. The existence and role of plumes in
turbulence production in Benard convection was con-
firmed recently in numerical experiments where transi-
tion from soft to hard turbulence has been obtained.

One of the most interesting features of this transition
is a dramatic change in the probability density P(X) of
the normalized temperature fluctuations,

T —6/((T —6) 2) '~2 = T/(T2) '~2

where 6(x,y, z) is the mean value of the temperature T
which is a function of position in the cell. In the soft-
turbulence regime (Ra ~ 10 ) the probability distribu-
tion measured at the center of the cell is Gaussian, while
in the hard-turbulence regime (Ra & 10 ) the observed
P(X) was very close to exponential. Similar behavior
of P(X) was also obtained in numerical experiments.

i~((VT) ') - (v3T) 86/8z, — (2)

which is the well known balance relation equating pro-
duction and dissipation in convective turbulence.

Multiplying (1) by T " ', a relation for arbitrary mo-
ments of X can be derived:

—(2n —1)(T " (VT) ) -(T " v3T) 86/Bz. (3)

Dividing (3) by (2) gives

(2 1 )(X2n —2 2) ~(X2n —2 (4)

where y (VT) /((VT) ), y3 v3T/(v3T), and x
T /(T ); it is clear that (X ) (y ) (y3) 1. Assum-

ing that volume averaging is equivalent to ensemble
averaging we introduce the probability density

P(X,y,y3) P(X)q(y, y3 (X),
where q(a, P ~ y) is the joint conditional probability of
the variables a and P for a fixed value of the variable y.

The exponential dependence of the probability distribu-
tion P(X) can be viewed as a manifestation of the inter-
mittent nature of the temperature field in the hard-
turbulence regime. Indeed, the flat (flatter than Gauss-
ian) probability density P(X) for large X indicates a
high probability of occurrence of large-amplitude events
(bursts of turbulent activity) occupying a small fraction
of space.

In this Letter the theory of probability distributions
developed for the problem of a passive scalar diffusing in
a random velocity field is modified for the problem of
turbulent Benard convection.

Let us consider a Benard cell defined on the domain
—~ & x & ~, —~ & y & ~, and —x/2 & z ~ m/2. The
bottom (z - —z/2) plate is heated by the constant heat
flux H const. In this case 6(x,y, z) =6(z) and the
equation of motion for the temperature fluctuation T
-T—6(z) is

T yT 7(y T v3
a6

Z

Multiplying (1) by T and averaging the resulting equa-
tion over the volume leads to
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Using (5) the relation (4) can be rewritten as follows:

(2n —1) X "
qi (X)P(X)dX

where

J X " qd(x)P(x)dx,

and

ql(x) - y'q(y, y3 ix)dydy

(8)X " [(P(X)qi (X))X+P(X)qd(X)]dX 0.4

Equation (8) is satisfied for an arbitrary n only when the
expression in the square brackets of the integrand in (8)
is equal to zero. This gives the differential equation for
P(X) with the solution

t & qd(u)du

qadi(x) "' qi (u)u
(9)

The uniqueness of the solution (9) is proved easily for
the case P(X) P( —X), qd(X) qd( —X), and q& (X)

q| ( —X) in which we are interested in this work. The
properties of (9) can be analyzed readily in the limit
X~ 0. Relation (9) gives the probability density P(X)
defined by two variables only (qd and qt) instead of the
infinite set of moment relations (4).

When X 0, qi =I+kx since qi (X) q& ( —X)
and ql (X) is assumed to be at least twice differentiable
at X 0. The case qi 1 corresponds to the Kolmo-
gorov theory of turbulence based on the assumption of a
constant, nonfluctuating dissipation rate (VT) =const.
Thus, the contribution kX to qi (X) can also be viewed
as a correction to the Kolmogorov (mean-field) value of
q& (X) 1 due to the dissipation fluctuations. In this
case the relation q& =1+k% might be valid for both
large and small values of X.

Substituting the definition of y3 into (7) gives

fv3(r)8[X(r) —X]d r

fb [X(r) —X]ddr

Relations (9) and (10) show us that the probability dis-

qd(X) „y3q(y, y3 I X)dy dy3

are the expectation values of y and y3 for a given value
of W, respectively. It is clear that

fy3(r)6[X(r) —X]d"r
qd )-

fb[X(r) —X]d"r
and

0 fy (r)b'[X(r) —X]d r
fa[X(r) X]d'r-

If P(X)X " 0 when X ~, the relation (6) can be
recast:

tribution P(X) is dominated by the conditional expecta-
tion value of v3 for a fixed value of X(r) =X. To investi-
gate the analytic properties of qd(X) we notice that
(v3T) H const has a fixed (positive) sign. This means
that choosing T(r) T&0 and considering values of
v 3 (r) at all points of the flow with T(r) =T & 0 we shall
find that the mean value of v3(r) taken over the domain
where T(r) T & 0 is equal to v3(T) & 0. This result is
the consequence of the symmetry of the problem: The
warm portions of fluid are transferred from the bottom
plate by the positive velocity fluctuations v3) 0. At the
same time the negative temperature fluctuations T & 0
are carried from the top plate by the negative velocity
fluctuations v3 (0. Thus, the conditionally averaged ve-
locity v3(T) is an odd function of T or of X, v3(X)- —v3( —X).

Two cases are to be considered:
(1) v3(X) cx:X when X 0. In this case turbulence

production does not involve any particular velocity scale.
This gives qd(X) ceX /(v3X) and the probability density
P(X) is Gaussian in accordance with (10).

(2) The turbulence production involves a well-defined
velocity scale. For example, the hard turbulence is pro-
duced by the plumes emitted from the boundary layer
with velocity v=v„. In this case positive and negative
temperature fluctuations X& 0 and X(0 are carried by
the plumes having velocities +v„and —v„, respectively,
and according to (10), qd-v„X/(v3X)(1+kX ) provid-
ed turbulence is dominated by the plumes in the limit
Ra ~. Combining this with relation (9) and the ex-
pression for q |(X) 1+kX gives the following for
small kW:

P(X) cL exp [—(a/ Jk )arctg JkX] =e

where

a T, ,v /(v3T) T, ,v„/H —1.

The value of a can be estimated readily. In Kolmo-
gorov turbulence L;/2n 1, (v ) =3Cxe t, and (T )

2x((VT) )e ' Ba, where the dimensionless constants
Cz and Ba are equal to =1.6 and =0.8, respectively. It
has been shown in Ref. 5 that v =0.25(v ). Substitut-
ing these values into the definition of a we derive
a=(0.25 x 3 xi.6x 1.6) 't =1.4. This value is to be
compared with a 1.3 and a 1.2 observed in Refs. 4
and 5, respectively.

It has to be emphasized that according to the exact re-
lations (9) and (10) the exponential probability distribu-
tions of the normalized temperature always exist when
convective turbulence is dominated by the bursts having
a well-defined velocity scale v —1. Even in the case of
"soft" turbulence, characterized by the Gaussian distri-
bution, an artificially introduced instability of the
thermal boundary layer will break the symmetry and
cause the transition to the exponential distribution func-
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tion P(X) provided this instability generates the velocity
Auctuations with probability density P(v3) sharply
peaked at i v3 i vo —1. This prediction can be tested
experimentally by carefully designed mechanical pertur-
bations of the thermal boundary layer to enhance its in-
stability.
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