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Limiting Probability Distributions of a Passive Scalar in a Random Velocity Field
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Diffusion of a passive scalar in a random velocity field v(x, t) is considered. An exact, closed form of
the limiting (t ~) probability distribution of the normalized scalar is derived. The predictions of the

theory are compared with the results of numerical simulations.
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V v(x, t)-0,
is interesting from both a theoretical and an experimen-
tal point of view. This equation describes the evolution
of a passive contaminant in a random medium and is
used for calculations of heat and mass transfer in tur-
bulent fiows. Theoretical investigations of (1) have
mainly been restricted to consideration of properties of
the scale-invariant solutions provided the scaling proper-
ties of the correlations of the velocity field are known. '

Recent experiments on scalar diffusion in turbulence
and on the temperature fluctuations in Rayleigh-Benard
convection " led to new experimental data on the prob-
ability distribution of a scalar (dye concentration or tem-
perature) in turbulence. The major question yet to be
addressed can be formulated as follows: Is there a uni-
versal probability distribution of a scalar in a random ve-

locity field? If this distribution exists, then what are its
properties? The problem formulated by Eq. (1) has re-
cently been attacked by the renormalization-group
method' ' which allowed determination of the scaling
properties of the solutions of (1). The applicability of
the renormalization-group approach to this problem is
not so obvious because Eq. (1) describes essentially a
nonstationary process. Indeed, let us introduce Q

(T (x, t)). The equation for Q is derived from (1),

elQ/8t - —2tcp((VT) '&, (2)

and thus Q~ 0 as time t ~ ee provided that tcp & 0.
Numerical experiments on the time evolution of the

passive scalar governed by (1) revealed some interesting
features: After a period of relaxation the fourth-order
moment of the normalized field, A' T/Q'I, reaches a
stationary limit (X ) const. In this work we study the
properties of the stationary probability distributions of
the properly normalized passive scalar governed by (1).

The equation of a passive scalar T(x, t) diH'using in a
random velocity field v(x, t),

8T(x, t) +v VT(x, t) -tcpV'T(x, t),

—2n(2n —1)xpT " z(VT) . (3)

Next, according to the definition of X,

g~2n g~2n ~2n —2

+v; tcpV A "—2n(2n —1)x'p (VT)
8t 8x;

tt tc 2n

+ ((VT)'&. (4)

Averaging (4) over the space and taking into account
that

(V2~z") (v; rl~z"/elx;) (v;~2") =0,
Xi

the exact relation for the moments (A' ") is obtained in
the stationary state:

(2tt 1)~2n —2(VT) 2/Q ) ~2n)

where Q t ((VT) ). The most interesting property of
(5) is that all moments of the variable A are entirely
determined by the correlations of W " with the single
variable (VT) /Q|. The parameter 2tcp((VT) ) =N is

The exact, closed form for the probability distributions
will be derived for the case of arbitrary statistics and dy-
namics of a random velocity field v(x, t). The derived
formula expresses the probability distribution function
(PDF) of the normalized passive scalar in terms of the
conditional expectation value of the normalized scalar
dissipation rate. This feature of the PDF was noted in
an important work by Pope' ' who derived a time-
dependent equation for the probability density of the sca-
lar, but neither analyzed it in a general form nor gave a
closed-form solution. Here we are interested in the prop-
erties of the limiting (t~ ee) PDF's for which a simple
formula can be derived and compared with the results of
numerical experiments.

The equation of motion for the variables T " following
from (1) is

8T 2n

+ 0

1962 1989 The American Physical Society



VOLUME 63, NUMBER 18 PHYSICAL REVIEW LETTERS 30 OCTOBER 1989

the mean dissipation rate of the scalar field in accor-
dance with (2). If X " and (VT) are statistically in-
dependent so that (X " (VT) ) (X " )((VT) ),
then, according to (5), (2n —1)(X " ) -(X ") and
(X ") (2n —1)lt. This means that X is a Gaussian vari-
able with probability density P (X): P (X) —n
xexp( —X /2). The statistical independence assump-
tion leading to this result is too strong. To verify it we
have to consider the dynamical equations for (VT) and
determine the moments involved in (5). The relation (5)
does not explicitly include the velocity field v(x, t), and
thus it is valid for an arbitrary field v(x, t). It does not
mean, however, that the properties of the random field
v(x, t) are not refiected in the probability distribution
functions since the variable v(x, t) does enter the recur-
sion relations for the moments of the scalar derivative
8T/8x;.

To further investigate the properties of the stationary
distribution P(X) following from (5) let us introduce a
normalized scalar dissipation rate

y (VT) /((VT) ) = (VT) /Q,

so that (y ) (X ) 1 and rewrite (5) as

(2n 1 )(X2n —
2y 2) (X2n) (6)

Introducing the joint probability distribution P(X,y),
the relation (6) can be written as

(2n —1) X " y P(X,y)dXdy

X "P(X,y)dXdy . (7)

Let us seek the solution P(X,y) as P(X,y) P(X)
&q(y (X), where q(y ~X) is the conditional probability
of the variable y for a given value of the second variable

Substituting this form of P(X,y) into (7) and using
the normalization condition fq (y ( X)dy 1 leads to

and thus

'~ uduP(X) -C[q( (X)] 'exp
q~ (u)

(12)

P(X)- C
(1 ~ kX 2) 1+1/2k

(14)

The proof of the uniqueness of the solution (12) is sim-

ple. In the statistically isotropic case (X) 0, P(X)
-P( —X) and q~ (X) q& ( —X). Thus the function in-

side the square brackets in the integrand of (10) is an
odd function of X. Thus, relation (10) is satisfied only
when the expression in the square brackets of (10) is
identically equal to zero.

Formula (12) gives the probability distribution of the
random variable X. To make further progress, the infor-
mation about q& (X) is needed. When X and y are two
statistically independent variables q& (X)—:1 and rela-
tion (12) is reduced to the Gaussian distribution func-
tion.

The major advantage of the relation (12) is that it al-
lows us to use some basic symmetries of the problem
combined with assumptions about analytic properties of
q& (X) to investigate the functions P(X). For example,
in isotropic, homogeneous turbulence P(X)-P( —X)
and q& (X) q& ( —X). Next, let us assume that q& (X)
is at least twice diQ'erentiable at X 0. When the scalar
dissipation rate is statistically independent of the scalar
itself, we have qt (X) 1. To account for the correlation
between these variables, let us expand q & (X):

q, (X)=1+kX, k —8 q&/8X )~-p,

where we assume k —l.
Substituting this relation into the formula (12) leads

to

(X " ')'P(X)dX y q(y ~X)dy I X "P(X)dX. (8)

Defining the expectation value of y for given X,

qo&(X) -„y'q(y I X)dy,

the relation (8) can be rewritten as

8P(X) p( )x"
O

4
O

+P(X) q' +XP(X) dX-0. (»)8q P)(X) -7
-8

1 8P
P 8X

X
q j'(X)

The differential equation for P(X) is

8lnq P)(X)

8X

FIG. 1. Logarithm of the probability density of normalized
passive scalar as a function of X T/T .. +, results of nu-

merical simulations;, theory based on relation (14) with

k 0.08.
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where k —1. Direct numerical simulations of the prob-
lem of a passive scalar were conducted in Ref. 17. The
results of the simulations are compared with predictions
given by formula (14) in Fig. 1. The agreement between

theory and experiment is excellent in the entire range
—7~X&7. Understanding why a theory based on an
expansion which is valid only for %&&1 agrees well with

experiment in a much wider interval of variation of X
remains a major challenge.
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