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Parity-Breaking Transitions of Modulated Patterns in Hydrodynamic Systems
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A model for a subcritical parity-breaking bifurcation of a periodic pattern is introduced. It is found
that nucleated regions of the new asymmetric state propagate with a well-defined velocity in a direction
determined by their parity, and leave in their wake a pattern with an altered wavelength. Successive
passage of these "parity bubbles" enables the systems to relax to a selected wavelength. The possible
relevance of these findings to recent observations of "solitary modes" in directional solidification and hy-

drodynamic experiments is discussed.

PACS numbers: 47.20.Ky, 03.40.Gc

The Rayleigh-Benard transition of a fluid heated from
below' and the Mullins-Sekerka instability of a moving
interface between two phases are paradigms of a hydro-
dynamic transition beyond which a uniform pattern in

space gives way to a periodic structure. Experiments
performed near the onset of these transitions show
clearly that the structures which appear (i.e., a pattern
of convective rolls or a cellular interface) replace the
continuous translational symmetry of the homogeneous
system with a discrete one, but that these periodic pat-
terns retain reflection symmetry. Phenomenological ap-
proaches to the dynamics of such patterns which invoke
only these invariance properties have proved successful
on both qualitative and quantitative levels.

Recently, however, it has been observed that beyond
the Mullins-Sekerka instability of liquid crystals, there
may appear localized, propagating regions within which
the pattern is left-right asymmetric, as shown schemati-
cally in Fig. 1. These traveling domains possess a num-
ber of important properties, notably that they move in a
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FIG. &. Resolution of an interface pattern into symmetric
and antisymmetric components. (a) The symmetric cellular
pattern Uz, (b} a pattern U& antisymmetric with respect to Uz,
(c},(d} two linear combinations of U~ and Ug with localized
opposite-parity amplitude functions 3 + . Arrows indicate
directions of motion.

direction determined by the sense of their asymmetry.
Analogous observations have been made in other direc-
tional solidification experiments, in Rayleigh-Benard
convection, and in studies of a fluid meniscus near a ro-
tating cylinder.

We suggest that these traveling domains are nucleated
inclusions of an antisymmetric state whose presence is
an indication of a secondary bifurcation to a broken-
parity state. On the basis of rather general symmetry
considerations, we develop the simplest time-dependent
amplitude equations for the transition; the resulting
model exhibits many of the qualitative features observed
in the experiments.

For concreteness, we cast the following discussion in
the language of directional solidification, but expect the
arguments to be valid for related experiments. Let us
first review the time-dependent Landau-Gin zburg
description of the initial Mullins-Sekerka (MS) transi-
tion. The planar interface which is stable below the MS
instability is, of course, invariant under arbitrary spatial
translations x~ x+2, while beyond the bifurcation the
modulated interface possesses the more restricted
discrete symmetry x x+nX, for any integer n, X, being
the fundamental wavelength of the pattern. When the
periodic interface just above onset is slightly distorted, it
may be described as U(x) RelC(x) exp(iqox) l, with
qo=2tt/X, and where C(x) is a slowly varying complex
amplitude whose dynamics reflects the full translational
and reliection symmetries of space. The (gauge-
invariant) equation of motion in the normal form is
C& C„„+R(C),where % is a suitable nonlinear opera-
tor. Writing C A exp(i&) with the amplitude A and
phase N real, the "up-down" and "left-right" symmetries
of the bifurcated state are then manifested in the invari-
ance of the equations of motion for A and N under each
of the transformations x —x, A ~ —4, and
N~ —+, as we11 as + &+const.

Let us now describe the parity-breaking transition.
Imagine an interface function U(x) which is a linear
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0xx+bA+ ' ' ', (3)
where f(A) is an odd polynomial in A, e and 8 are cou-
pling parameters, and we have suppressed unimportant
numerical prefactors. Terms such as P„„and AA„ in (2)
and A„„ in (3) are allowed by symmetry, but are not
central to the discussion here. "

In light of the nucleation effects seen in experiment,
we investigate the form of f appropriate to a first-order
phase transition, namely

f (A) pA+aA —A (4)

combination of symmetric and antisymmetric profiles Uz
and U~, as shown in Fig. 1;

U(x) SUs (x+p)+AU~(x+P),

with Ug(z) Ug( —z) and U~(z) —U~( —z), where

S(x), A (x), and p(x) are slowly varying rea/ quantities.
The amplitude A serves as the order parameter of the
antisymmetry, vanishing prior to the secondary instabili-

ty. Likewise, lateral translations of the pattern are de-
scribed by shifts in the phase variable P. The theory out-
lined below makes no detailed statements concerning the
functional forms of Ug and U~. [For the experiment of
Ref. 4, the symmetric pattern is well described as

Us acos(qpx)+bcos(2qpx), with b/a = —0.25, as
shown in Fig. 1(a)]. The internal structure of the exper-
imentally observed domains suggests that the antisym-
metric function Uz has a significant projection on the
function sin(2qpx), as indicated schematically in Fig.
1(b). With the localized amplitude functions A+. of op-
posite parity shown in the figure, we may construct the
model interface patterns shown in Figs. 1(c) and 1(d).

The symmetries of the equations of motion may be de-
duced from the invariance of the dynamics seen by ob-
servers on opposite sides of the plane of the pattern. Let
U(x) and U(x) be the interface as seen by the two. The
lateral coordinates of the viewers are clearly related by
x —x, so a shift p(x) for one corresponds to —p(x)
for the other. The vertical displacements seen by the two
must be identical, and hence (with the antisymmetry of
U~), the amplitudes must be related by A(x) —A(x).
To summarize, we require the covariance '

A( —x) ——A(x), y( —x) - —y(x);

8,A( —x) -—8,A(x), 8,y( —x) - —8,y(x),
with the latter relationships following directly from the
motion seen by the observers.

For slowly varying A and p, the lowest-order equations
of motion obeying these symmetries, as well as the in-
variance under p~ &+const, are

A, A„„+f(A)+eP„A+ (2)

—
4 aA + —,

' A is appropriate to a system near a tricrit-
ical point, but with a )0 exhibiting a first-order transi-
tion from the state A 0 for p & p* to A ~A* for
p & p*, p* —

—,', a being the coexistence point at
which the three minima of F(A) are equal. As is usual
in such time-dependent Landau-Ginzburg models, we as-
sume that sufficiently near the instability the important
variation of the Landau coefficients in (2) and (3) re-
sides only in the control parameter p. For solidification,

p —(v —vp)/vp, vp being some characteristic velocity.
We shall see below that the couplings between A and p,
whose form is a direct consequence of the antisymmetry
of U~ with respect to Ug, provide the driving force for
the propagation of domains of antisymmetry ("bub-
bles").

Numerical and analytical study of the model in (2)
and (3) yields a number of qualitative results that are in
accord with experiments on directional solidification. "
First, postulating the existenced of a tI.ansition to a
broken-symmetry state explains the appearance of a
lower limit of interface velocities for the existence of the
propagating inclusions. Second, we find that the direc-
tion of their propagation is determined completely by the
parity of the inclusion. Third, the periodic pattern left
after the passage of an inclusion has a phase p which is
linear in x; i.e., the underlying symmetric pattern has an
altered wavelength. The direction of that shift is deter-
mined by its parity. Hence, the sign of the wavelength
shift is related to the direction of propagation of the in-
clusion, in accord with experimental observations.

In order to understand the motion of inclusions, it is
perhaps simplest first to consider the motion of an ele-
mentary kink, the interface between a region with A 0
and another with A A*. The kink profile Ax(x) is
stable at the coexistence point p p* when t.. 8 0, and
satisfies A, 0, with the trivial phase function &„„0.
There are four such solutions which are uniquely
identified by their parity (+ ) and left-right orientation
(L,R) as shown in Fig. 2. For small deviations hp away
from p, each of these kinks will move in a direction
determined by the relative stability of the states A 0
and A ~A, as shown by the dashed arrows in the
figure. The shape and velocity of propagation u of these
kinks may be determined as follows. Taking, for exam-
ple, the "+L" kink, we write A(x, t) AL+(z)+W(z),
where z x —xp(t) and W is a small correction,
u xp(t) being the as yet unknown velocity. Substitut-
ing this trial solution into the equations of motion, we ar-
rive at a standard problem in Poincare perturbation
theory involving a "solvability condition" to eliminate
secular terms. ' This lowest-order approximation to the
kink velocity is

When e 8 0, the diffusive
tions in (2) arise from the

—BP/BA, with the free
where —8F/8A f(A ).

and polynomial contribu-
relaxational dynamics A&

energy P 2 A„+F(A ),
Thus, F(A) —

2 pA

fd Ax(8Ax. /8 )
u ——Qp fdz (8Ax./8z) ' (5)

Inspection of this result shows that the driving force for
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F&G. 2. Four elementary kink structures arising from the
amplitude equations. Dashed arrows indicate the directions of
propagation due to positive deviations p —p*; solid arrows in-
dicate the direction of motion arising from amplitude and
phase couplings, with e &0 and 8 & 0.

kink motion arising from the control parameter p de
pends only on the kink orientation and not on its parity
(see Fig. 2).

Turning now to the role of the terms coupling A and p,
we find it convenient to solve Eq. (3) formally for @=P„
as y BG 'A„, G being the Green's function for the
diffusion operator 8, —8„„. Substitution back into (2)
yields an integro-differential equation for A with the
term Ay now replaced by one with the same symmetry
as the quantity AA, since G is of unique sign. For the
purpose of establishing the role of parity in the motion
induced by the couplings, we thus consider the solvability
condition appropriate to this term, and find a velocity
with the same parity and orientational symmetries as

fdzA (aA /az)'
fdz (8A /Bz )

which is manifestly antisymmetric under parity inversion
and symmetric under orientational inversion. Thus, the
couplings between amplitude and phase lead to motion
depending only on parity and not on orientation (Fig. 2).

Now we may join in pairs elementary propagating
kinks of opposite orientation and similar parity to create
propagating bubbles. As a consequence of the above, we
see immediately that the propagation velocities vI and v,
of the left and right edges of the inclusion are not equal,
the difference being directly related to the deviation of p
from the coexistence point; that is, the inclusions can
grow or shrink in time, as has been observed in recent ex-
periments. Figure 3 shows the time evolution of the
amplitude and phase of a propagating inclusion, as ob-
tained from a numerical solution of (2) and (3). We
find nucleationlike effects in that a localized disturbance
around the homogeneous state only leads to a propaga-
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ting bubble if it exceeds some characteristic size.
After the passage of the bubble, we find that the local

phase function left behind is linear; p=sgn(e)qx, with

qa:hp. This is equivalent to a shift in the wave vector
of the underlying symmetric pattern by an amount ~ q.
(Observe that a linear phase function and vanishing am-
plitude are static solutions to the model dynamics. ) It is
observed experimentally that spreading bubbles leave
behind a pattern of shorter wavelength; this implies
t. (0. A relation exists between the wave vector chosen

by the system and the rate of spreading of the bubble, as
may be seen by approximating the shape of the inclusion

by a square wave whose left and right edges move at ve-
locities vt and v„; A (x, t) =A *e(x—vt t )e(v„t —x ),
with e being the Heaviside function. Neglecting the
diffusive term in (3), we may simply integrate in time to
obtain

BA (v~ vt)x/vtvp, 0 & x & vtt,

bA (t —x/v„), vtt & x & v, t,(x, t) = ' (7)

with p 0 for x~0 and x~ v„t. The triangular shape
of the phase function (7) is in essential agreement with
the full numerical solution in Fig. 3. Of course, the de-
tailed motion of an inclusion is also affected by interac-
tions between its front and back edges, but this exponen-
tially decaying coupling is quantitatively important only
for small inclusions.

FIG. 3. Time evolution of amplitude and phase functions, as
obtained by numerical solution of Eqs. (2) and (3), with

p —0.2, a 8 1.0, and e —1.0. Successive snapshots
have been displaced vertically for clarity; the linear phase left
in the wake of the bubble actually overlaps at diA'erent times.
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The relation between the spreading rate of a moving
inclusion of the broken-parity state and the wave-vector
shift left in its wake has an interesting consequence for
pattern selection. Note that when the wave-vector shift
is p„q, the effective control parameter, that is, the
coefficient of the linear term in A in Eq. (2), is p, +eq.
Thus, with e & 0 and q having the sign of p —p*, we see
that repeated passage of bubbles tends to drive p to p*,
the system relaxes to a selected wavelength by the suc-
cessive passage ofparity bubbles

In conclusion, we find that several qualitative features
of pattern-forming systems exhibiting localized asym-
metric modes follow directly from a simple time-
dependent Landau-Ginzburg model of a dynamical tran-
sition to a broken-symmetry state. This phenomenon of
parity breaking appears to be associated with a funda-
mentally new mechanism for wavelength selection in cer-
tain hydrodynamic systems. The generality of the
derivation of the model leads us to believe that there
should be other classes of systems in which propagating
inclusions of broken-parity states will appear. Future
work in this area will focus on higher-dimensional gen-
eralizations of this transition, the dynamics of defect
structures, and an understanding of the microscopic ori-
gins of parity-breaking bifurcations in the diverse experi-
mental systems.
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