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Evidence for Phase Transitions in Finite Systems
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A canonical-ensemble calculation of the specific heat in Ne using the eigenstates of a number of
realistic interactions and the energies of the states obtained experimentally exhibits a prominent peak at
T=1.7-2.5 MeV which is associated with the deformed-to-spherical phase transition seen in finite-
temperature mean-field calculations. This phase transition arises from a change in the relevant degrees
of freedom describing the system and will occur for any nucleus which has a low-lying collective spec-
trum. Including a continuum in addition to the discrete spectrum does not produce an additional peak in
the specific heat at low temperatures.

PACS numbers: 21.60.Ev, 05.30.Fk, 21.60.Jz, 27.30.+t

One of the interesting questions which arises in the
finite-temperature description of nuclei is whether or not
phase transitions really do occur. Finite-temperature
mean-field calculations have addressed this question but
have not been able to provide a definitive answer because
of the large fluctuations inherent in such calculations.
The vanishing of an order parameter such as the gap pa-
rameter in superconducting nuclei' or the quadrupole
moment in deformed nuclei has been offered as evidence
of the existence of a phase transition in such systems.
When the fluctuations, which are partly thermal and
partly due to the nuclear-structure approximation, are
calculated they are generally large enough to obscure the
presence of such a phase transition.

Perhaps a more meaningful quantity to study in this
respect is the specific heat. Model studies in an SU(2)
X SU(2) system show that, in the thermodynamic limit,
this system exhibits a singularity in the specific heat
characteristic of a true phase transition. ' Furthermore,
the remnant of this singularity remains in the form of a
peak in finite systems of this type. The presence of this
peak in the specific heat has been used to map out the
phase structure in such a model.

In deformed nuclear systems, however, it has recently
been pointed out' that one must obtain in the canon-
ical-ensemble calculation of the specific heat a peak
which is due simply to the presence of the ground-state
rotational band. Furthermore, if one includes only the
states in the ground-state rotational band the asymptotic
high-temperature behavior of the specific heat in the
canonical ensemble yields, as it should from the law of
Dulong and Petit, " correct information about the
relevant degrees of freedom in the system. The peak, as
we have shown in a canonical-ensemble calculation of
the specific heat in Mg, occurs at a low temperature
and is given solely by the contribution of the ground-
state band to the specific heat. The high-temperature
contribution of the ground-state rotational band is ob-
scured by a much more prominent peak which we associ-
ate with a deformed-to-spherical phase transition. In
this calculation of the specific heat in Mg, however,

only the even-J, positive-parity, I=0 states were con-
sidered.

In this Letter we provide more convincing evidence
that phase transitions do indeed take place in deformed
systems and discuss in some detail their meaning. We
have performed an exact diagonalization of Ne in the
sd shell for a number of realistic eff'ective interac-
tions' ' and have used the exact shell-model eigen-
states as well as the energies of the states obtained ex-
perimentally to calculate the specific heat. In the canon-
ical ensemble, the partition function is given by

Ctv - &E),a
T (2)

where the subscript N indicates that the specific heat is
evaluated in the canonical ensemble, with the number of
particles N in the system fixed. Admittedly the number
of states in these systems is not large, but recent model
studies of quantum spin chains' have demonstrated that
quantum systems with few degrees of freedom display
quantum-statistical behavior and can be described ade-
quately by the canonical ensemble in spite of the fact
that only 2 states are present and the density of states is
too irregular to be described by a Boltzmann distribu-
tion.

In Fig. 1 the low-lying part of the positive-parity
eigenspectra for the various sd-shell effective interac-

Z(P) g (2I+1)(2J+1)e
J,I, v(J,I)

where p 1/T and v(J, I) labels the states in each irre-
ducible representation with angular momentum J and
isospin I. Here only the ground state is populated at
zero temperature and not the entire yrast band. The
latter case is more appropriate for nuclei formed in
heavy-ion collisions since the kinetic energy can be con-
verted into collective energy before thermalization. The
ensemble average of the energy is formally defined by
(E) —8(lnZ)/8P and the specific heat is calculated as
the square of the fluctuation in the energy multiplied by
p; alternatively
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FIG. 1. Shell-model spectra for the positive-parity states in Ne calculated with the Kuo-Brown (KB) interaction (Ref. 12), the
Vary-Yang (VY) interaction (Ref. 14), the Preedom-Wildenthal (PW) interaction (Ref. 13), and the Rosenfeld (R) interaction
(Ref. 15). The experimental spectrum (Ref. 17) (EXP) includes only the positive-parity states.

tions' ' are compared with the experimental spectrum.
More energy levels occur in the experimental spectrum
as no attempt has been made to isolate the states arising
primarily from sd-shell configurations. All of the
effective interactions appear to provide a reasonable
description of the low-lying excitation spectrum.

The specific heats as a function of temperature calcu-
lated in the canonical ensemble from the eigenstates of
the various effective interactions are given in Fig. 2. In
all cases the specific heats calculated from the complete
eigenspectra are almost identical and exhibit the same
structure: a small peak at T=0.5 MeV and a much
larger peak at T=2.4 MeV. The temperature at which
the maximum of the larger peak occurs differs by less

than a few hundred keV for the different effective in-
teractions. In the finite-temperature Hartree-Fock
(FTHF) approximation for the Vary- Yang (VY) in-
teraction' a similar peak occurs in the specific heat at
T=2.1 MeV, indicating quite dramatically that a de-
formed-to-spherical shape transition has taken place.
The change of symmetry is evident in the expansion
coefficients of the FTHF solutions.

If only the states in the ground-state rotational band
are used in the calculation of the specific heat, this is
sufficient to reproduce the smaller peak at the lower tem-
perature and to yield roughly unity at higher tempera-
tures. This behavior is identical for all of the effective
interactions and is shown in Fig. 2 for the Preedom-

1923



VOLUME 63, NUMBER 18 PHYSICAL REVIEW LETTERS 30 OCTOBER 1989

8.0 20.0

6.0— 15.0—

4.0—U 10.0—

2.0— 5.0—

0.0:**
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Temperature (MeV)

FIG. 2. The specific heat as a function of temperature in the
canonical ensemble calculated, solid lines, from the complete
eigenspectra of the KB (Ref. 12) (0 ), VY (Ref. 14) (&& ), PW
(Ref. 13) (O), and R (Ref. 15) (&) interactions and, dashed
lines, using the eigenstates of the PW (Ref. 13) interaction in
the ground-state rotational band (o), and the following sets of
eigenstates of J and I: even J, I 0 (&) and all J, I 0 (+ ).

Wildenthal (PW) interaction. The asymptotic behavior
thus gives the correct value for the number of relevant
degrees of freedom, namely two for a rotor —each degree
of freedom contributes one-half in units of the Boltz-
mann constant to the asymptotic value of the specific
heat. Note also that if only the states in the ground-
state rotational band are used in the calculation of the
specific heat, the larger peak at T=2.4 MeV is no longer
present. As soon as the states with higher excitation en-
ergies are used in the calculation of the specific heat a
prominent peak appears at T=2.5-3.0 MeV. Regard-
less of which subset of eigenstates of J and I are included
in the ensemble the specific heat shows a large peak
which obscures the high-temperature contribution from
the states in the ground-state rotational band. Further-
more, as more states are included in the ensemble this
peak becomes more pronounced. This behavior may be
understood in the following manner: As the system is
heated up a transition occurs in the states populated in
the canonical ensemble from those associated with the
purely collective ground-state rotational band to those of
a more random nature. This peak in the specific heat
arises from the change in the level density associated
with the thermal excitation (see Fig. 1). It signals a
change in the relevant degrees of freedom of the system

00 I

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

Temperature (MeV)

FIG. 3. The specific heat as a function of temperature cal-
culated using the complete eigenspectrum of the PW interac-
tion (solid line plus circles), and using all of the experimental
energy levels (dashed line plus triangles) with excitation ener-

gy below 14.5 MeV (Ref. 17) and only those with positive pari-
ty (solid line plus triangles). The curves labeled with crosses
include the effects of continua starting at 10 (solid curve) and
14.5 MeV (dashed curve), respectively.

and therefore may be regarded as indicative of a phase
transition. This phase transition must occur in all de-
formed nuclei and is more evident when more states are
included in the ensemble. In the FTHF approximation
the transition manifests itself as a deformed-to-spherical
shape transition, the spherical shape arising from averag-
ing over random deformations which are the result of
thermal excitations of different single-particle orbitals.

The specific heat has also been calculated using the
experimental energy spectrum of Ne' (see Fig. 3).
The specific heat was computed using just the positive-
parity states and using states of both parties to see the
effect of the negative-parity states which are not includ-
ed in the shell-model calculations. In both cases the
specific-heat curves obtained resemble in shape those ob-
tained using the shell-model eigenstates. The differences
in the magnitudes of the peaks are probably due to the
fact that at higher excitation energies the experimental
level spectrum is denser than those obtained theoretically
(see Fig. 1). For the positive-parity states the position of
the maximum is in good agreement with the shell-model
results; including the negative-parity states shift the posi-
tion of the maximum to a slightly lower temperature.
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In calculations with the experimental spectrum only
those energy levels whose excitation energy is less than
14.5 MeV have been considered since above this energy
the assignment of spins and parities of the various levels
is less certain. To ensure that this truncation of the
spectrum does not affect our conclusions we have added
to the discrete spectrum two continua starting at 10 and
14.5 MeV, respectively. As shown in Fig. 3, the main
effect of the continuum is to enhance the peak in the
speci6c heat. We have employed for the density of states
in the continuum a modi6cation of the usual Fermi-gas-
model prediction' with level-density parameter eo-8
MeV. The qualitative results presented here should not
be influenced by the detailed form of the density-of-
states function.

In conclusion, we would like to point out that a phase
transition of the type described here will occur for any
nucleus which has a low-lying collective spectrum, re-
gardless of the nature of the collectivity. Eventually, at
some excitation energy, the energy-level spectrum will
become denser and more random and a peak will occur
in the speci6c heat which indicates that the relevant de-
grees of freedom in the system are no longer purely col-
lective. Furthermore, we 6nd it remarkable that no ad-
ditional peak in the specific heat is produced by the in-
clusion of the continuum; there is no evidence in the
specific heat of the particle-emission thresholds which
exist below 18 MeV and which should mark the begin-
ning of a liquid-to-gas phase transition.
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