Implications of Recent $M_{Z,W}$ and Neutral-Current Measurements for the Top-Quark Mass

Paul Langacker

Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396 (Received 12 September 1989)

The implications of precise new Z- and W-mass and weak-neutral-current data for the top-quark and Higgs-boson masses are analyzed. It is found that (a) $\sin^2\theta_W = 0.226 \pm 0.005$ for arbitrary m_t and for all $M_H < 1$ TeV; (b) $m_t < 210$ GeV at 90% C.L.; (c) $m_t > 40$ GeV at 90% C.L., even if the direct lower limit $m_t > 78$ GeV does not apply; and (d) there is no constraint on the Higgs-boson mass.

PACS numbers: 14.80.Er, 12.15.Mm, 14.80.Dq

Precise values for the Z and W masses have recently been reported by the Mark II Collaboration at the SLAC Linear Collider¹ (SLC)

$$M_Z = 91.17 \pm 0.18 \, \text{GeV} \,,$$
 (1)

by the Collider Detector at Fermilab (CDF) Collaboration²

$$M_W = 80.0 \pm 0.2 \pm 0.5 \ (\pm 0.3) \text{ GeV},$$
(2)
$$M_Z = 90.9 \pm 0.3 \ (\pm 0.2) \text{ GeV}$$

(the first uncertainty is statistical, the second in M_W is systematic, and the last, in parentheses, are correlated scale errors), and by the UA2 Collaboration at CERN³

$$M_W = 80.0 \pm 0.4 \pm 0.4 \ (\pm 1.2) \text{ GeV},$$
(3)

$$M_Z = 90.19^{+0.56}_{-0.59} \ (\pm 1.4) \text{ GeV}.$$

In addition, several groups have reported direct lower limits on the *t*-quark mass, assuming canonical chargedcurrent decays. The most stringent is

$$m_t > 78 \text{ GeV} (90\% \text{ C.L.}),$$
 (4)

by CDF.⁴

A number of authors⁵⁻¹³ have shown that the consistency of the weak-neutral-current and boson-mass data places an upper limit on m_t , which enters via the radiative corrections. Although some of the new results are preliminary, they are sufficiently important to justify an analysis of their implications for m_t and M_H . In the following I will utilize (1)-(4), the weak-neutral-current data described in Ref. 6, and new results in $v_{\mu}e$ scattering¹⁴ and atomic parity violation.¹⁵

The basic results are shown in Fig. 1. The dashed lines indicate ¹⁶ the $\pm 1\sigma$ range determined for $\sin^2\theta_W \equiv 1 - M_W^2/M_Z^2$ from the SLC M_Z value in (1) as a function of m_t . It is seen that the derived $\sin^2\theta_W$ falls rapidly with m_t . Most other determinations of $\sin^2\theta_W$ [e.g., from the individual M_W and M_Z values in (2) and (3), from atomic parity violation, from the polarized *ed* asymmetry, and from $v_\mu e$ scattering] exhibit a similar m_t dependence, but with larger uncertainties, and therefore

do not significantly constrain m_t . They are omitted from Fig. 1 for clarity, but are included in the global fits. However, there are two determinations of $\sin^2\theta_W$ with a different m_t dependence from M_Z . The first is the vhadron neutral-current data, which is dominated by deep-inelastic scattering. As seen in Fig. 1, the extracted $\sin^2\theta_W$ value¹⁷ is only weakly dependent on m_t . Clearly, the combination of M_Z with vN neutral-current data yields an upper limit of ~200 GeV on m_t , as was already known from earlier $M_{W,Z}$ measurements.

Similarly, the determination of $\sin^2 \theta_W$ from M_W/M_Z is independent of m_t . From (2) and (3) one has $\sin^2 \theta_W$ -0.221 ± 0.009 . From Fig. 1, M_W/M_Z combined with M_Z yields a somewhat weaker upper limit of around 250 GeV on m_t , as well as a lower limit of ~80 GeV.

The 90%-C.L. allowed region in the $\sin^2 \theta_W \cdot m_t$ plane obtained by combining all of the boson-mass data in (1)-(3), the old and new weak-neutral-current data, and the direct limit in (4) is shown in Fig. 1. It is seen that the region 80 GeV $< m_t < 220$ GeV is strongly favored. These results are for a Higgs-boson mass M_H of 100

FIG. 1. $\pm 1\sigma$ uncertainties in $\sin^2\theta_W \equiv 1 - M_W^2/M_Z^2$ determined from M_Z (dashed line), M_W/M_Z (dotted line), and vN neutral-current data (dash-dotted line) as a function of m_t for $M_H = 100$ GeV. Also shown is the direct lower limit from the nonobservation of the t in $\bar{p}p \rightarrow \bar{t}t + X$ (long-short line), and the region (solid line) in $\sin^2\theta_W - m_t$ allowed by all data at 90% C.L. ($\Delta\chi^2 = 4.6$).

TABLE I. 90%-C.L. upper and lower limits on m_t in GeV obtained from (a) M_Z, M_W ; (b) M_z plus vN neutral-current data; and (c) all boson-mass and neutral-current data; for $M_H = 10$, 100, and 1000 GeV. The upper limits in square brackets include the direct lower limit in (4) (which renormalizes the probability distribution). The lower limits are obtained from the boson-mass and neutral-current data only. The last column gives the best fit and $\pm 1\sigma$ uncertainty.

Мн	M_Z, M_W	Upper Limits $M_Z + vN$	Lower Limits			
			All	M_Z, M_W	All	All
10	237 [243]	159 [174]	176 [182]	45	39	128±45
100	245 [249]	168 [179]	186 [190]	56	51	$140 \pm \frac{43}{32}$
1000	258 [261]	188 [195]	207 [208]	86	91	$165 \pm \frac{1}{48}$

GeV. The qualitative picture is similar for other M_H values, although the precise m_t limits exhibit some sensitivity to M_H .

Detailed limits¹⁸ on m_t are shown in Table I for various assumptions, including the data set used (to illustrate sensitivity), the Higgs-boson mass, and whether or not the direct limit in (4) is incorporated. One sees the following: (a) $m_t < 180$, 190, and 210 GeV at 90% C.L. for $M_H = 10$, 100, and 1000 GeV, respectively, using all data. (b) The indirect (boson-mass plus neutral-current) data alone provide a nontrivial 90%-C.L. lower limit $m_t > 40$, 50, and 90 GeV for $M_H = 10$, 100, and 1000 GeV. This is weaker than the direct limit in (4), but is nevertheless of some importance: It would continue to hold in some extensions of the standard model (e.g., if the t decays into b plus charged Higgs boson) for which the direct limit is not valid.¹⁹ (c) If m_t and M_H were known, M_Z in Eq. (1) would determine $\sin^2 \theta_W$ to $\sim \pm 0.0013$. However, it is obvious from Fig. 1 that $\sin^2 \theta_W$ and m_t are strongly correlated (the correlation is ~ -0.97 for large m_t). From the global fit one obtains

$$\sin^2 \theta_W = 0.2264 \pm 0.0054 \tag{5}$$

for arbitrary m_t and for any $M_H < 1$ TeV (i.e., the uncertainty is mainly due to m_t). (d) The existing data yield no useful constraint on M_H : The χ^2 for the best fits vary by < 0.3 as M_H varies from 10 to 1000 GeV, and the central value of $\sin^2 \theta_W$ (for arbitrary m_t) varies by ≤ 0.0001 . However, from Table I the upper and lower limits on m_t are rather sensitive to a large M_H . Further implications of the new data will be discussed elsewhere.²⁰

This work was supported by the Aspen Center for Physics and by the Department of Energy Contract No. DE-AC02-76-ERO-3071. ifornia, August 1989 (to be published), updated from G. S. Abrams *et al.*, Phys. Rev. Lett. **63**, 724 (1989).

²M. Campbell, in Proceedings of the Fourteenth International Symposium, on Lepton and Photon Interactions, Stanford, California, August 1989 (to be published); F. Abe *et al.*, Phys. Rev. Lett. **63**, 720 (1989).

³A. Weidberg, in the Proceedings of Ref. 1.

⁴P. Sinervo, in the Proceedings of Ref. 1.

⁵M. Veltman, Nucl. Phys. **B123**, 89 (1977).

 6 U. Amaldi *et al.*, Phys. Rev. D **36**, 1385 (1987), and references therein.

⁷P. Langacker, W. J. Marciano, and A. Sirlin, Phys. Rev. D **36**, 2191 (1987).

⁸P. Langacker, Comments Nucl. Part. Phys. **19**, 1 (1989).

⁹G. Costa et al., Nucl. Phys. **B297**, 244 (1988).

¹⁰G. L. Fogli and J. Ellis, Phys. Lett. **B213**, 526 (1988).

¹¹G. L. Fogli and D. Haidt, Z. Phys. C 40, 379 (1988).

 12 D. Haidt, DESY Report No. DESY 89-073 (to be published).

 ^{13}Z . Hioki, Tokushima University Report No. 89-05 (to be published).

¹⁴CHARM II Collaboration, D. Geiregat *et al.*, CERN report (to be published); CHARM I Collaboration, J. Dorenbosch *et al.*, Z. Phys. C **41**, 567 (1989); E-734, K. Abe *et al.*, Phys. Rev. Lett. **62**, 1709 (1989).

¹⁵M. C. Noecker et al., Phys. Rev. Lett. 61, 310 (1988).

¹⁶The formalism is described in Ref. 6.

¹⁷The uncertainty for vN includes a realistic estimate of the theoretical uncertainty, which is dominated by the *c*-quark threshold in $vN \rightarrow \mu^{-}X$. In particular, the effective *c*-quark mass (1.5±0.3 GeV) is fit to the data simultaneously with $\sin^{2}\theta_{W}$ for each m_{t} . If this were not done (i.e., if m_{c} were fixed) then $\sin^{2}\theta_{W}$ would *increase* slightly with m_{t} for $m_{t} > 150$ GeV.

¹⁸The $\chi^2(m_t)$ distribution (minimized with respect to $\sin^2 \theta_W$ for each m_t) is not completely Gaussian, so the confidence limits are obtained from a probability distribution $P(m_t) = C \times \exp(-\Delta \chi^2/2)$, where C is a normalization factor.

¹⁹The Mark II Collaboration has recently given the lower limit $m_t > 41$ GeV for a t decaying by $t \rightarrow bH^+$, A Weinstein, in the Proceedings of Ref. 1.

²⁰P. Langacker (to be published).

¹G. Feldman, in Proceedings of the Fourteenth International Symposium on Lepton and Photon Interactions, Stanford, Cal-