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Exact Upper Bound on Barrier Penetration Probabilities in Many-Body Systems:
Application to "Cold Fusion"
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The rate of tunneling of nuclei to classically forbidden small relative separation, in a fully interacting
quantum-mechanical many-body system in equilibrium, is rigorously bounded above by a value calcul-
able in terms of the Born-Oppenheimer potential between the nuclei. In the "cold-fusion" problem, the
bound can be related to the aftinities of helium and deuterium atoms to the metal in question, and shows
that the allowed rate of tunneling of deuterons is far too small to be consistent with inferred rates of
fusion.

PACS numbers: 73.40.Gk, 03.65.—w, 25.45.—z

Two recent experiments have claimed evidence for a
surprisingly high rate of the nuclear fusion reaction d+ d

He+ n in deuterium trapped in palladium ' and ti-
tanium. Possible intrinsic sources of enhancement of
the fusion rate include a large suppression of the
Coulomb barrier between deuterons arising from many-
body screening effects, an unusual enhancement of the
nuclear reaction rate produced by the solid-state environ-
ment, or an exotic mechanism relying on coherence be-
tween fusion processes involving different deuteron pairs.
We focus in this Letter on the first possibility. In the ab-
sence of the latter two mechanisms, the rate of fusion in
a system containing N deuterons is RN/2, where
R =AP(0), A is the total intrinsic reaction rate for the
processes d+d~ He+n, H+p at zero relative separa-
tion, r =r; —r~, and P(0), the object of our study, is the
probability density of finding two deuterons at r=0,
averaged over the motion of their center of mass, the
other N —2 deuterons, and the remainder of the solid-
state environment. Since A is —1.5 x 10 ' cm /sec, to
obtain the value of R (—10 /sec) quoted in Ref. 2

(and a fortiori that inferred in Ref. 1) requires that
P(0) be at least —10 /cm .

A naive estimate using the wave function for relative
motion in a repulsive Coulomb potential at energies —1

eV in a classically accessible volume —1 A gives P(0)
—10 /cm . The crucial question is whether a sophis-
ticated many-body screening effect in metals could lead
to an enhancement of the magnitude required. Since the
rate depends exponentially on parameters such as the
classical distance of closest approach of the deuterons,
the required enhancement is not necessarily implausible.
Recently we showed that within the lowest-order Born-
Oppenheimer (BO) approximation no such enhancement
is possible in a metal in equilibrium, given essentially
known facts about the behavior of He in these metals.
However, that argument does not answer the question
completely. In the first place, even if the screening were
entirely due to the electrons of the metal, the fact that

the expansion parameter m/Md (where m is the electron
mass, and Md is the deuteron mass) of the BO expansion
is small, —5 x 10, does not guarantee that corrections
of high order in m/Md are unimportant in calculating
exponentially small probabilities; the more so in a metal,
as distinct from say the D2 molecule, because the elec-
tronic excitation energies can be arbitrarily small.
Second, the effects on the tunneling of a particular
deuteron pair of the motion of "third-party" deuterons,
let alone that of the nuclei of the metal itself, are not at
all well described by the lowest-order BO approximation.
Koonin has recently suggested that such fluctuations
could lead to a substantial enhancement of the barrier
penetration probability.

In this Letter we obtain an exact upper limit, within
the framework of nonrelativistic quantum mechanics, on
the tunneling of two deuterons to the origin r =0 of their
relative coordinate. This limit is expressed in terms of
the energy E of the many-body state in question and the
affinities of deuterium and helium to the metal; the
bound makes no assumptions whatever about the nature
of any many-body mechanism involved, nor does it de-
pend on the validity of the Born-Oppenheimer approxi-
mation. In the case of two isolated deuterons at temper-
ature T=O, the limit rigorously implies that P(0) cannot
exceed 2x10 '/cm and thus that R is bounded above
by a rate —3X10 /sec, a value over 23 orders of mag-
nitude below that reported in Ref. 2. For the case of
many deuterons at T=0 our result shows that the neces-
sary enhancement cannot be achieved without a totally
incredible value of the deuteron pair correlation function
at atomic separation; in thermal equilibrium at room
temperature such enhancement would require at a
minimum very exotic long-range influences on the tun-
neling process. Although proved for equilibrium, the ar-
gument also strongly constrains any nonequilibrium
enhancement mechanism, by limiting the enhancement
in the equilibrium base-line theory on which such a
mechanism might be constructed.
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The argument proceeds in three stages. We first prove
the quite general result that the exact rate of tunneling
of a pair of nuclei into the classically forbidden region, in
a condensed-matter system, is bounded above by the rate
calculated for any spherically symmetric lower bound on
the lower-order BO potential, U(r) (defined precisely
below), for the motion of the relative coordinate r of the
pair. Specifically, suppose that U(r) is bounded below
by some spherically symmetric potential V2(r) (where
r =

i r i ). For a given energy E of the many-body state,
we define rp(E) as the largest distance for which V2(r)

E~ 0 f—or all r ~ rp(E). We define p(r) as the proba-
bility density angular averaged in r; B(p,r, E) as
ln[p(r)/p(0)], where p is the reduced mass of the pair;
and Bp(p, r,E) as the value of B calculated for the one-
body problem with potential V2(r). Then for any
r ~ rp(E) we have the general inequality

B(p,r, E) ~ Bp(p, r, E) .

In the second stage we use an improved version of the ar-
gument of Ref. 4 to make a judicious choice of V2(r),
and in the third stage exploit these results to obtain
upper limits on P(0).

State I.—In the proof of (1) we collectively denote by

g all the coordinates of the many-body system except the
relative coordinate r of the deuteron pair in question.
We reserve the notation V for gradients with respect to r,
and write fdic as a shorthand for the many-dimensional
integration over g. Note that g includes not only all elec-
tron coordinates, but also the center-of-mass coordinate
of the deuteron pair, and all coordinates of "third-party"
deuterons and of the nuclei of the metal.

The Schrodinger equation for a stationary-state wave
function y(r, g) of the many-body system may be written
as

deuterons at r; hence from (2) we have

Q
2

dg y*(r, g)V y(r, g) ~ [U(r) E]—p(r) .
2p " (4)

ItH'(r) = — VR+ [V, (R+r/2;g)
2M4

By using the Schwarz inequality, and the fact that dif-
ferentiation with respect to r commutes with integration
over g, one may show that for any real wave function f
[here i y(r, g) i ] one has f

deaf

V f~ gV g, where g
fdic—f . Thus from (4) we obtain

Q2 V2 ~ U(r) E, — (5)
2u Z(r)

where now g(r) =p(r) 't . We may formally regard the
quantity g(r) as the solution of the Schrodinger equation
for a particle of mass p moving in a potential Vi(r)
—= (lt2 /2p) [V g(r)]/g(r) +E. Then if V2(r) is any
direction-independent lower bound on U(r), we have
V, (r) ~ V, (r).

Let us define p(r) to be the solution of Schrodinger's
equation that is regular at the origin, for a particle of
mass p in the potential V2(r), at energy E. Then since
both g(r) and p(r) can be taken to be positive, finite,
and continuous for all r ~ rp(E), where rp(E), as above,
is the classical turning point in the potential V2(r), a
simple application of Green's theorem to the quantity
gV& —

&V@ gives the result that as r decreases, In@(r) de-
creases faster than In&(r) for all r ~ rp(E), where, as
above, g(r) denotes the angular average of g(r). Noting
that Bp is defined in terms of p, we immediately derive
the inequality (1).

State II.—We now obtain a suitable potential V2(r)
for constructing a useful bound on the tunneling rate.
We write the quantity H'(r) =—H(r) —e /r in the form

V +H(r) y(r, g) =Ey(r, g) . (2) + V, (R —r/2;g)]+K((), (6)

f

J dg y*(r, ()H(r)y(r, ())U(r) J dg i y(r, g) i

—=U(r) p(r),
where p(r) is the total probability density to find the

(3)

A

The operator H is a function of the coordinates g and
their conjugate momenta, and depends on r through the
interaction of the two deuterons with each other and
with the rest of the system. The lowest eigenvalue, U(r),
of H(r) at a given r is the potential for relative motion in
the lowest BO approximation. (It should be carefully
noted that since the latter is defined by letting all other
coordinates, including the "slow" ones, adjust to the in-
stantaneous value of r, this potential may diff'er some-
what from the one derived in the approximation in which
all the nuclei are held fixed. ) Since U(r) minimizes the
expectation value of H(r) for a given normalization of
the wave function over g, we can write

where R denotes the center-of-mass coordinate of the
deuteron pair; g denotes all coordinates of the environ-
ment, other than R and r; V, (a) is the Coulomb interac-
tion between a deuteron at point a and the environment;
and M4=2Md is the mass of the a particle (up to the
nuclear binding energy, which is irrelevant here). We let
yp(R, (;r) be the lowest eigenfunction of H'(r), for fixed
r, with corresponding eigenvalue E'(r). Then choosing,
for the state yp(R, (,0), a trial density matrix that is
a mixture of yp(R+r/2, g;r) and yp(R r/2, g;r) with
equal weights, one easily demonstrates E'(r) ~E'(0).
But —E'(0) is by definition the binding energy of an a
particle in the metal. Thus using the fact that the
ground-state energy relative to that without the two
deuterons cannot be greater than (minus) twice the bind-
ing energy of a single deuteron to the metal, and measur-
ing all energies from the many-body ground state with
the two deuterons present, we may write a lower limit
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V2(r) E—on U(r) E—as

2 2

Vi(r) E—= —X(E)
r ao

'

where k(E) =kp+E/(e /ap); here

kp =E4+K4 —2(Ey+ Kd ) .

(7)

(8)

The experimentally observable energies on the right-
hand side, all measured in hartrees (e /ap), are, in order,
the binding energy of the He atom, the affinity of He
to the metal in question, the binding energy of a deuteri-
um atom in free space, and its affinity to the metal.
(Note that unlike in Ref. 4, the zero-point energy of the
a particle does not enter this form of the argument. )

The deuterium affinity, Kd, is 0.087 hartree in Pd and
presumably of similar size in Ti; to the best of our
knowledge there is no published direct measurement of
the helium-atom affinity, K4, for Pd or Ti, but the fact
that at room temperature He desorbs' from Ti and
forms bubbles" in Pd suggests that, as for other metals,
K4 is either positive or very small (« 1 eV). A conserva-
tive estimate is therefore A.p=1.78. [Strictly speaking,
K4 and Kd should be evaluated in the actual (deu-
terium-soaked) ground state, but since it would take a
quite extraordinary and unprecedented dependence on
deuterium concentration, c, to aA'ect the results appreci-
ably, we use c=0 values. Any corrections are easily in-
corporated. ]

Stage III.—We write the inequality (1) in the form
p(r)/p(0) ~ p (r)/p (0), where P(r) is defined as in

stage I, and integrate both sides over a sphere of radius
rp(E). Introducing the standard notation for the Cou-
lomb problem, '

2tl (E)z= r, ri(E)=
i/2

(9)

(z is the variable p in Ref. 12, a notation we avoid for
obvious reasons), we obtain the inequality

3
1 2g [Fp(o) l'

p(0;E) ~ " p(r)d'r4' rp " ' —"o f "F (z)dz

(lo)

p(o;E) ~ p(r)d'r
4trrp3(E) ~ ™Mo

x Q (E) tl
' (E)e

where Fp(rt, z) is the L =0 radial Coulomb wave func-
tion (Ref. 12, Sec. 14.1). Noting that Fp'(z) ~ 0 for z
less than the turning point 2g, and Fp(0) =0, we readily
see that a lower bound on the integral in the denomina-
tor is Fp (2 tl )/3F p (2' ). Using the explicit formulas
(14.6.2), (14.1.8), (14.5.10), and (14.5.11) of Ref. 10,
we can write the result in the form

where Q(E) is the number which depends weakly on E,
and for E =0, A,O=1.78, is approximately 60.

For a single pair of deuterons, for which P (0)
=p(0;E), the integral in Eq. (11) is clearly bounded
above by unity. Then, putting in the numbers, we find
that at zero temperature the equilibrium value of P(0)
for dd fusion cannot exceed 2x 10 '/cm . Similar
evaluations lead, for the reaction p+d He+ y, to an
upper bound on P(0) of 3x 10 /cm', and a reaction
rate R~d ~10 '/sec; and for the reaction d+t He
+n, to P(0) ~4x 10 /cm, and R, ~ 10 %ec. We
reemphasize that these results are exact, to within small
numerical uncertainties arising from the poorly known
value of K4 and its variation (and that of Kd, etc.), with
hydrogenic concentration.

In the physically more relevant case of N deuterons,
we define the dimensionless correlation function

G(r;E) = (Npp) 'g p(r;, ;E),,, =, ,

where po is the average deuteron density. Then if we
sum the inequality (11) (which applies to an arbitrary
pair ij) over i and j, and let G(E) denote the average of
G over the sphere r ~ rp(E), we find an upper limit on

P(O) =—N-'gp(r, , ),, =p

to be

P(0) ~ ppG(E)Q(E)rt' '(E)e

Estimating the maximum deuterium concentration as
two per metal ion, we find that at zero temperature
P(0) ~4x 10 G/cm, where G is the dimensionless
correlation function averaged over the classically forbid
den region of relative motion. To obtain a value of P(0)
~ 10 /cm requires the total incredible value G
& 10 . (Such a value would inter alia imply partial
Coulomb interaction energies well beyond TeV per
deuteron, and could very likely be rigorously refuted by
an argument similar to that of state II above, but we
shall not do this here. )

The case of finite temperature is slightly trickier, since
in order to get rigorous results we have to take E to be
the total energy of the many-body state measured from
the ground state, a quantity proportional to the total
number of particles in the system. It is clear from (9),
(11), and the definition of X(E), that for two isolated
deuterons, to obtain a value of P(0;E) of the order of
10 /cm requires at least an energy of the order of 80
eV [and a similar number for the many-deuteron case as
long as G(E) is not highly anomalous]. " If we use a
microcanonical ensemble and take into account that the
thermal energy per atom at room temperature of Pd
(and D) is of order the Dulong-Petit value (0.075 eV),
we see that such an energy value cannot be achieved at
room temperature in an assembly of fewer than —1000
atoms. Correspondingly, in a macroscopic system at
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least this number of atoms would have to collaborate to
achieve the required enhancement. While we have not
been able rigorously to rule out such an exotic long-
range eAect operative only at finite temperature, it seems
extraordinarily implausible.

We conclude that if the "cold fusion" claimed' to
have been observed in D trapped in Pd and Ti is a real
phenomenon, it is unlikely in the extreme to be due to
solid-state enhancement of equilibrium probabilities.
Our argument clearly can also be used to put severe con-
straints on the efficacy of nonequilibrium mechanisms,
once these are specified in detail.
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