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Generalization of the Lyddane-Sachs-Teller Relation to Disordered Dielectrics
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Sum rules and causality are used to obtain a general relation connecting the dynamic and static prop-
erties of any dielectric system which supports polarization waves. The Lyddane-Sachs-Teller relation
appears as a special limiting case. Inhomogeneous media provide illustrative examples.

PACS numbers: 42.20.Dd, 63.50.+x, 77.80.—e

The Lyddane-Sachs-Teller (LST) relation' remains a
corner stone in the understanding of displacive ferroelec-
tricity. Frohlich and Cochran first recognized the con-
nection between the static and dynamic properties of fer-
roelectrics because the LST relation for a simple homo-
geneous dielectric,
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provided a connection between the transverse and longi-
tudinal frequencies, co, and m~, and the dc and optical
dielectric constants, eo and t. , in the dielectric response
function. Equation (1) has been generalized to cubic
crystals with more than two atoms per unit cell and also
to include the case of damping. In addition, Barker
found that Eq. (1) could be obtained from a causahty ar-
gument if the response approximated a &function mode
at m, . All of these extensions treat single crystals.

With sum-rule and causality arguments we show that
for any nonconductor the ratio of the static and high-
frequency dielectric constants equals the ratio of second
moments of the longitudinal and transverse loss. By
simulation this general relation is shown to describe ex-
actly the connection between the dynamic and static
properties of inhomogeneous media in the long-wave-
length limit for two distinct topologies.

Consider a nonmagnetic linear isotropic dielectric sys-
tem which is described by the dielectric function e(co)

Ree(to)+time(co). Two kinds of response functions
occur since there are two kinds of vector polarization
fields, solenoidal and irrotational, in the system. For a
solenoidal response the loss function is I m[ (ec)o/e]
while the corresponding irrotational loss function is
Im[ —e /e(co)].

Gne way to identify characteristic frequencies of this
arbitrary system is using a moment representation.
With the LST relation in mind, we define a weighted
second moment of the solenoidal and irrotational loss
peaks as

using an obvious notation.
Next we make use of a general sum-rule result that '
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A Kramers-Kronig integral connecting the real and

imaginary parts of the solenoidal response function is
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dx Re —a,
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which when evaluated at m 0 reduces to
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In a similar manner one can evaluate at co =0 the corre-
sponding Kramers-Kronig relation for the irrotational
response, and find
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Each of the integrals involved is an "f-sutn rule" which

can be obtained from a Kramers-Kronig relation plus the
requirement that in the high-frequency limit the
response is free-particle-like. Therefore, the numerator
in Eq. (3) is equal to the numerator in Eq. (2) and the
ratio of the two equations simplifies to
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Since Eqs. (7) and (8) are the numerator and denomina-
tor of Eq. (5), then
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which is the desired result. For a general system, the ~a-
tio of a particular class of second moments is equal to
the ratio of the low- and high-frequency dielectric con
stants.

Let's first apply Eq. (9) to the single-crystal case. For
a cubic crystal with a single ir-active vibrational mode
the appropriate dielectric function is
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Substituting this expression into Eqs. (7) and (8) gives
values for the integrals of to~/ro, and r0~/rot, respective-
ly, where m~ coI —co&, hence the "crystalline" LST re-
lation is recovered.

To illustrate the generality of Eq. (9), we consider a
vibrational model in which both the dc dielectric con-
stant and weighted loss spectra can be calculated but one
which does not necessarily produce the single-crystal
spectrum described by Eq. (10). The long-wavelength
response of inhomogeneous dielectric media are ideal for
this purpose. Depending on the topology of the struc-
ture, two di6'erent mean-field methods are available to
describe both the dc and optical properties of composites,
the Maxwell-Garnett (MG) and the Bruggeman [ef-
fective-medium-approximation (EMA)] models. '

We treat the vibrational response of a two-component
composite, one component inert (e, -e, 10) and the
other obeying Eq. (10) (parameter values: ro, 5 cm
ror/y 1, I/to& 100, and eb e, /2 5). These

values are reasonable for a particle mixture of a displa-
cive ferroelectric, at a temperature just above the phase
transition value, and Si (the inert material) of volume fill
fraction f.

Figure 1 presents, for each composite-medium model,
the spectral density of the solenoidal strength as a func-
tion of the volume fill fraction. The EMA model, Fig.
1(a), shows that with increasing f the spectral density is
shifted up in frequency into a broad impurity band. The
pole at ro, disappears for f) —,'. The change in the
spectruin for the MG model with increasing f is very
different [Fig. 1(b)] with a new, sharp spectral feature, a
void resonance, produced at larger frequencies. Con-
sidered together both calculations demonstrate that the
spectral weight shifts from low to high frequencies with
increasing f.

Figure 2 shows a similar development in the spectral
density of the irrotational strength with increasing f but
now the shift is to lower frequencies. The EMA [Fig.
2(a)] generates an asymmetric distribution with the pole
at rot disappearing for f& 3 . For the MG model [Fig.
2(b)] the pole remains intact with increasing f but a new
spectral feature appears at lower frequencies.

For the EMA model we calculate eo/e and also
evaluate Eqs. (2) and (3) as a function of f. The root-
mean-square moment frequencies are presented in Fig.
3 (a). Note that ((to ), ) 't changes rapidly while
((ro )t)'t is nearly independent of f so that both fre-
quencies approach the isolated-sphere resonance fre-
quency of the near-ferroelectric material at large f. In
Fig. 3(b) the solid curve gives the calculated dependence
of eo/e and the circles, that of (ro )r/(ro ),. The ratio
calculations for the MG model are also shown here. Be-
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FIG. 1. Spectral density of the solenoidal strength for a
composite with one ir-active component. (a) Calculated with
the EMA model. (b) Calculated with the MG model, inert
material embedded in the near ferroelectric. Volume fill frac-
tion of the inert material is f. Solid curve: f 0, near-fer-
roelectric medium described in the text; dashed curve: f

0.25; dot-dashed curve: f 0.5; dotted curve: f 0.75.
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FIG. 2. Spectral density of the irrotational strength for a
composite with one ir-active component. Same parameters as
described in Fig. 1.
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(3)) are calculated from the published spectral data"
good agreement is found with Eq. (9) at each f value.

The published optical constants' for single-crystal Si
over the broad electronic interband frequency region per-
mit another more extensive experimental test. By nu-
merical integration from 107 to 0.161 eV, we obtain
(co ), 27.033 (eV) and (co )t 310.777 (eV) so that
(co )t/(co ), 11.50. The value of this ratio is within 1%
of that obtained from the ratio of the dielectric constants
at the two limiting frequencies, ep/e 11.715/1.0134

11.56, in accord with Eq. (9). Hence, the sum-rule ar-
guments supported by the illustrative calculations with
composites together with these Si interband numerical
results demonstrate that Eq. (9), the generalized LST
relation, characterizes the long-wave displacement-cur-
rent response of electronic or vibrational degrees of free-
dom in an ordered or disordered dielectric medium.
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FIG. 3. (a) Dependence of the root-mean-square frequen-
cies on f for the EMA model. Triangles: ((to li)'t . Circles:
((to &, ) 't . (b) Dependence of the ratio of the second moments
and of the dc dielectric constant on f EMA calcu. lations: solid
curve, / eoecircles, (to lt/(to ),. MG calculations: inert ma-
terial embedded in the near ferroelectric: dashed curve, / eo;e
triangles, lto lt/(to ), . The dot-dashed line and squares are
similar calculations but for the near ferroelectric embedded in

the inert material.

cause the two components are treated in an asymmetric
way in this model, there are two possible arrangements,
one for medium a surrounded by b and visa versa. Both
possibihties are presented in Fig 3(b).. The broken
curves correspond to ep/e and the squares and triangles
to the values of (to )t/(co ), . Although the EMA and
MG models distribute the spectral weight of the sole-
noidal and irrotational response functions in different
ways, the second-moment expression, Eq. (9), holds in-

dependent of these topological details.
The recent measurements of the reststrahlen band of

diamond:ZnS composites" provide one experimental test
of Eqs. (2), (3), and (9). As the diamond fill fraction f
increases to 33%, the pole frequency and zero crossing of
the vibrational spectrum remain essentially unchanged,
yet for frequencies below this TO mode the reflectivity
(hence ep) decreases. These results are not consistent
with Eq. (1); however, when the moments [Eqs. (2) and
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