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Monopoles and ConSnement in Three Dimensions
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The string tension is calculated using magnetic monopoles in three-dimensional U(l) lattice gauge
theory. The monopoles are identified in configurations of link angles generated in a simulation on a 32
lattice. Wilson-loop values are determined by the monopoles Aux through the loop. The string-tension

results are in excellent agreement with a semiclassical analytic formula.

PACS numbers: 11.15.Ha, 14.80.Hv

How is the topology of the vacuum related to con-
Gnement? A quantitative answer to this question has
been elusive for lattice QCD. In this paper, we report on
numerical calculations for the case of U(1) lattice gauge
theory in three dimensions. Our principal result is a cal-
culation of the string tension which directly involves

magnetic monopoles.
The physics studied here was first discussed by Po-

lyakov' who considered a three-dimensional continuum
theory in which the essential feature was an unbroken
U(1) gauge group with monopoles as instantons. Elec-
tric con6nement was established by a semiclassical
analysis of the multimonopole gas. In an analogous lat-
tice treatment, Banks, Myerson, and Kogut derived an
explicit formula for the string tension in Villain's version
of the U(1) theory. Our simulations establish that this
formula for the string tension is accurate over an unex-

pectedly wide range of couplings.
To begin our calculations, values of Wilson loops were

gathered on a 32 lattice. Because it is efficient to simu-

late, we used the cosine form of the U(1) action:

S -Pn g [1 —cos8„„(x)],

0.70

where

8„„(x)-8„(x)+8,(x+Iia) —8„(x+va) —8„(x),

and a is the lattice spacing. A heat-bath algorithm was
used to update the links. Wilson-loop statistics were
enhanced with an analytic version of the multihit pro-
cedure of Parisi, Petronzio, and Rapuano. At Ptv=2. 0,
2.2, and 2.4, we made runs of 25000 sweeps, dropped the
first 5000, and measured all Wilson loops up to R

10axT 14a, measuring every 25 sweeps. At these

Pn values, the string tension cr defines a correlation
length ( I/Jn which lies approximately between four
and eight lattice spacings. This range of correlation
lengths is large enough for continuum behavior to be
seen, but is still considerably smaller than the lattice size
of 32a.

From the Wilson-loop values W(R, T), the potentials
V(R) were determined by fits of lnIV(R, T) vs T. Then
we extracted the string tension cr at each Pn by perform-
ing linear-plus-Coulomb fits to the potentials: V(R)

—tt/R+ cTR+ Vo. The results are shown in Fig. 1 and
Table I (see the column labeled "original" ).

We now ask, can the same results be obtained using
the monopole gas of Polyakov? This means extracting a
set of monopole locations jm(x)] from the configurations
of link angles, then using these monopole locations to
form a second estimate of the Wilson loops and the
string tension.

DeGrand and Toussaint introduced a procedure which
locates a monopole by finding the end of its Dirac
string. First, every plaquette in a configuration is repre-
sented as 8„„(x) 2trn„„(x)+8„'„(x),where n„„(x) is an
integer, and 8„'„(x) is in the range [—tr, tr]. The n„, are

TABLE I. Results of fits with V(R) = —a/R+crR+ Vo for
original and monopole potentials. The columns Pn and Pv
refer to the parameter in the cosine and Villain actions, respec-
tively.

a P —2.4
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Original Monopole
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FIG. 1. The potentials from the origirm1 %'ilson loops and

their linear-plus-Coulomb fits.
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then used to define a net flux emerging from each ele-
mentary cube, and a monopole with charge equal to this
flux is assigned to the cube center. At the values of Pw
we use, only charges 0 and + 1 actually occur, although
the procedure allows 0, ~1 and ~2 to be generated.
The average number of monopoles found in a con-
figuration ranged from —200 at Pw 2.0 to —20 at
Pw -2.4.

In calculating Wilson loops in terms of monopoles, our
basic assumption is that the gauge fields can be split into
a contribution from monopoles plus free photons, i.e.,
A A,„+Aph. ' This leads to a factored form for
w(R, T):

w(z, T) -w»(&, »w ..«,». (2)

more general dependence on Pw.
The monopole contribution to a Wilson loop may be

written

Wmon- exp l Amon J

exp —2+i V x . D x
x

(4)

where the second equality in Eq. (4) follows if we set
J V&D, and perform the lattice analog of integration
by parts. The magnetic field of the monopoles can be
represented as —2+V& since the Dirac strings do not
contribute in the exponent. For a set of monopole
charges m(x), the scalar potential p (x) is given by

The factor 8'ph can be evaluated as a standard Gaussian
path integral:

(x) -QU, (x —x')m(x') .
X

(s)

~ph exp i Aph J

exp
2

g J(x)U, (x —x') J(x')
Z, X

(3)

where J(x) is the integer-valued current defining the
Wilson loop, and v, (x —x') is the lattice Coulomb poten-
tial. In the weak-coupling limit, P w ~ ~ and e~ I/Pw. However, at the finite values of Pw used here,
it is essential that we do not set e 1/Pw, but allow a

The dipole density D is defined on an arbitrary surface
of plaquettes with boundary J. The argument of the ex-
ponent in Eq. (4) is independent of the surface chosen,
and represents the magnetic flux due to the monopoles
through the Wilson loop. For convenience, the surface
defining D was taken to be in the loop plane.

We now turn to a discussion of the assumption Eq.
(2), and the proper choice of e (Pw) in W». In
Villain's form of the U(1) theory, Eqs. (2)-(4) are ex-
act, with e I/Pv. The parameter Pv appears in the
Villain action as follows:

exp( —Sv) Q g exp
x,p) v m„„(x) 2

[8„„(x)—m„,(x)] ' (6)

AccordIng. to universality, the same values for large Wil-
son loops (up to a nonuniversal perimeter term) can be
obtained using either the cosine action at Pw or the Vil-
lain action at Pv, provided the system is close enough to
the continuum limit. The relation between Pv and Pw
would be determined in principle by matching correla-
tion lengths (, or equivalently, string tensions:

~(Pv) -o(Pw) . (7)
We assume the way universality is realized is that Eq.

(2), already exact for the Villain action, becomes accu-
rate for the cosine action as we approach the continuum
limit. Since the photons are free and do not interact
with the monopoles, it follows that 8'ph from a cosine-
action calculation at Pw must equal W» from a Villain
calculation at Pv. This will be satisfied only if in W„h
from the cosine action, e (Pw) is evaluated as 1/
Pv(Pw)

The above discussion leaves unanswered the question
of whether or not universal behavior can be expected at
our values of Pw. To investigate this, we directly simu-
lated the Villain and cosine actions and compared re-
sults. These runs were shorter and on smaller lattices
than those on the 32 lattice. It turned out to be un-
necessary to actually use Eq. (7) to find Pv(Pw). In his
original paper, Villain " determined an approximate

t

form of the function Pv(Pw):

r, (p )
Pv(Pw) 21n

ri(pw)

where Io and I] are the standard modified Bessel func-
tions. We found this formula to be quite accurate. Us-
ing it to relate Pv and Pw, Wilson loops from Villain-
and cosine-action simulations differed only by a perime-
ter term, to within statistical errors. These results are
consistent with universality. The values of Pv corre-
sponding to our values of Pw are given in Table I. The
asymptotic relation Pv = Pw is clearly not satisfied.

Before turning to the actual use of Eq. (2), we discuss
a subtle point involving the monopole identification
scheme. In the Villain model, the path integral using the
action of Eq. (6) can be transformed via Fourier series
and the Poisson-sum formula into a Coulomb-gas repre-
sentation, where the 0„(x) no longer appear. The basic
variables in the gas representation are the monopole lo-
cations m(x). Free photons contribute an overall pertur-
bative factor [cf. Eq. (9) of Banks, Myerson, and Ko-
gut ]. It is of interest to confirm that the monopoles we

identify in the gauge-field configurations are physically
the same objects as those of the gas representation. On a
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10 lattice, we performed two independent simulations of
the Villain model: a conventional simulation for the ac-
tion of Eq. (6), and a direct simulation of the Coulomb
gas. The output of these simulations was two sets of
monopole locations: one from the gauge-field config-
urations of the conventional simulation, and the other
from the gas simulation. For Pv~ 0.6, the two distribu-
tions produced identical results for the total Coulomb en-

ergy of the monopoles, ' and for Wilson loops using Eq.
(2), to within statistical errors. Thus for the couplings of
interest here, the DeGrand-Toussaint scheme does
correctly identify the monopoles in the gauge-field
configurations. '

Having verified that the monopoles are being correctly
identified, and that there is universality between cosine
and Villain actions, we proceed to use Eq. (2) to evaluate
Wilson loops from our 32 cosine-action configurations.
It is straightforward to calculate 8'», where, by the dis-
cussion above, e is to be evaluated as I/Py(P~), using
Eq. (8) for Pv(P~). The monopole locations are ex-
tracted from the configurations, and used in Eq. (5) to
calculate p . Then W,„ is calculated using Eq. (4),
where the expected value implies an average over
configurations. Since the monopoles evolve very slowly
in the course of a run, configurations used in this average
were spaced by 200 sweeps. Combining 8'~h and W,„
finally results in a second estimate of Wilson loops which
we call "monopole" loops in the following.

The potentials from the monopole loops are shown in

Fig. 2, along with the potentials from the original Wilson
loops. A constant has been removed from the monopole
potentials at each P~. This constant is a reflection of the

0.90

perimeter term mentioned previously. To avoid crowd-
ing of points in the vertical direction, the original and
monopole potentials at P~ 2.0 and 2.2 have been shift-
ed upward by 0.2 and 0.1, respectively. The P~ -2.4 po-
tentials have been left unshifted. Being independent of
R, neither the removal of the constant nor the upward
shift affects any physical quantity.

From Fig. 2, it is clear that for large R, the potentials
agree. For small R, the monopole potentials have slight-
ly greater curvature. This small-R discrepancy is not
surprising. Our method of calculation of the Wilson
loops from monopoles relies on assumptions about uni-
versality. Universality applies on the scale of the corre-
lation length and greater; nonuniversal behavior can still
be present on the scale of the lattice spacing.

In Fig. 3 we show the potential and the separate con-
tributions from photons and monopoles, for Pg -2.0. It
is clear that the strong rise in the potential for large R is
due to the monopoles. This gives graphic evidence that
the nonperturbative effects caused by monopoles are ulti-
mately responsible for confinement.

We performed linear-plus-Coulomb fits to the mono-
pole potentials. The results are presented in Table I.
The extra curvature present in the monopole potentials
at small R shows itself in high values for a. The value
obtained for a is completely controlled by the smallest R
values included in the fit. In contrast, the value obtained
for the string tension is controlled by the large-R region.
To within statistical errors, the string tension calculated
from the monopole loops agrees with the string tension
obtained from the original Wilson loops at each value of
P~. This is our main result and shows that our treat-
ment of the monopoles and our handling of universality
are self-consistent at large R.

0.90
o total
0 photons
~ monopoles

0 O

0
G

O. OO

/a 1 O. Q

FIG. 2. Comparison of the potentials from the original Wil-
son loops (hexagons, Pa 2.0; squares, Pa 2.2; circles,
pw 2.4) with the potentials from monopole loops (crosses,
Ps 2.0; Pentagons, Ps 2.2; triangles, Ps 2.4).

O. OO
O. O

FIG. 3. The contributions to the potential from photons and
monopoles for Pa 2.0.
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FIG. 4. Upper curve: Measured values of string tension vs

Eq. (9). Lower curve: Measured values of the monopole den-

sity vs n' Pva /8.

exp[ —x'v, (0)Pi ], (9)

where v, (0) 0.2527. . . . In Fig. 4, we plot our results
for a versus the string tension from Eq. (9), using Eq.
(8) to compute Pv(P~). The agreement is remark-
able. ' We have also measured the total density of mono-
poles, n. Expressed in terms of o; the monopole density
is given by n x Pi o /8. In the same figure, we show
our results for n versus this formula, again using Eq. (9)

While it is no easier computationally, getting the
string tension from the monopoles is more revealing than
the usual method in that it is directly tied to the vacuum
topology and the mechanism of confinement. Although
monopoles are explicit only in the Coulomb-gas form of
the Villain model, it is satisfying that the physics they
describe can be extracted directly from the gauge 6elds,
and indeed using a diff'erent action. We have used the
cosine form of the action, but since universality is well
satis6ed, any reasonable periodic action could have been
used. Our results for three-dimensional U(l) show that
quantitative lattice-gauge-theory calculations with topo-
logical objects are possible. Although much more dif-
6cult, similar calculations should be possible in the
monopole approach to con6nement in lattice QCD. '

Finally, we compare our results with analytic formulas
derived semiclassically. The authors of Ref. 3 (see also
Ref. 15), using the Villain action, derived the following
for the string tension:

for a and Eq. (8) for Pi (Pu ). The measured values of n

approach the theoretical curve from above, reaching
agreement at P~ 2.4. It appears quite likely that
beyond Pz 2.4, both cr and n will agree with the
theoretical formulas. If so, then these formulas hold at
surprisingly small P~. The expected range of validity for
the theoretical results involves the Debye screening
length kD, related to rr by AD 2/rr Pzrr. Polyakov gives
nkD», 1 as the condition for validity of the semiclassical
analysis. ' However, nA, D is only =0.2 at P~ 2.4, and
nXD ~ 1 requires Pii ~ 3.3, or correlation lengths
~ 28a. The results of our simulation suggest that while
the condition nA, D»1 is certainly sufficient, it is overly
restrictive, and that the semiclassical analytic results
hold over a considerably wider range of couplings.
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