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Griliths Singularities in Two-Dimensional Random-Bond Ising Models:
Relation with Lifshitz Band Tails
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Ising models with correlated or uncorrelated random horizontal bonds are studied for square lattices in

zero field. The partition sum is expressed in terms of a one-component field. Griffiths singularities in the
free energy as function of temperature are derived. They are logarithmic transforms of certain Lifshitz
band tails. Grif5ths singularities occur above as well as below the critical temperature.
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Twenty years ago Griffiths' proved that the magneti-
zation of a randomly diluted Ising ferromagnet is nonan-
alytic when the external Geld It goes to zero, for tempera-
tures smaller than some temperature TG. This "Griffiths
temperature" is larger than the critical temperature T,
of the random system. The Griffiths singularity occurs
not only in the diluted Ising model, but quite generally in

systems with disorder. In percolation models, e.g. , the
singularity can be calculated explicitly, see Kunz and
Souillard. Griffiths' also considered the possibility of
nonanalytic behavior in the temperature variable at zero
Geld, but did not reach conclusive results. This will be
the topic of the present Letter, for general random Ising
magnets on a square lattice.

The Griffiths temperature is equal to the critical tem-
perature of a fictitious pure system, where all couplings
take the largest value allowed in the random system.
The temperature interval T, & T & T~ is commonly
called the Griffiths phase. The singularity at TG is

caused by large, but improbable, pure regions with

strongest couplings. In an infinite system these domains

may be arbitrarily large, and, therefore, arbitrarily close
to a phase transition at T~. Since the probability for
their occurrence decreases exponentially with their size,
the contribution to the free energy is expected to involve

an essential singularity.
Because of the mechanism of critical slowing down,

the long-time dynamics of random magnets in the
Griffiths phase is determined by such clusters. Hence
what leads to an invisible singularity in the free energy
shows up as the only contribution in the long-time dy-
namics. This is connected to another fundamental
phenomenon, namely, the Lifshitz band tail in the den-
sity of states of random problems with linear equations
of motion, such as tight-binding or harmonic systems.
Lifshitz showed that, at band edges of random systems,
an exponential singularity replaces the van Hove singu-
larity occurring in pure systems. Consider, for instance,
diA'usion in an infinite medium with traps at fixed ran-
dom positions. Here the long-time survival is slower
than exponential, because of the presence of arbitrarily
large clusters without traps. A recent discussion of this

problem for the three-dimensional situation was given by
the present author. It was shown that, for small con-
centration of traps, the asymptotic Lifshitz tail can be
extended to an energy interval of more practical interest.
In this way the crossover between an initial region with
essentially exponential decay and the asymptotic
stretched exponential decay in the trapping problem has
been determined.

A connection between Lifshitz tails and Griffiths
singularities has been suspected for awhile. It is the pur-
pose of the present work to show that both are indeed re-
lated to Ising models on a square lattice with random
bonds in zero field. The essential point is that the parti-
tion sum can be expressed in terms of a one-component
free fermion field if either horizontal or vertical cou-
plings are random. Given that form, recent results on
Lifshitz tails ' can be used to study the singularity of
the free energy as a function of temperature in zero field
for arbitrary distributions of disorder.

We shall consider two types of models. In the first
one, the random horizontal bonds are fully correlated in
the vertical direction. In the second model, disorder is
uncorrelated. The system with correlated randomness
was introduced by McCoy and Wu (MW), " who
showed that the free energy has an essential singularity
at the ferromagnetic phase transition. The calculations
of MW were redone by exact methods in Ref. 12; it was
found that the MW result is correct up to a prefactor.

Our main results concern the singularity of the free
energy at the Griffiths temperature T~ in random bond
Ising models. These results are presented next. For
comparison we recall that the singular part of the free
energy in Onsager's solution for pure systems behaves as

—PF„„,— dddyln(t ' +6'+p') -t 'lnt ', (1)
where 6 and p are wave numbers in the vertical and hor-
izontal directions, respectively. Here a11 numerica1 fac-
tors have been put equal to unity and t —T—T, mea-
sures the distance to the critical point. Let us now con-
sider the MW model, where disorder is fully correlated
in one direction. In this system translational invariance
is sti11 present in one direction, and will appear as in
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(1). However, for obtaining a value p rt/N, one needs
a strip of width N containing only the stronger of the
random couplings. This occurs with probability c
—=exp( —XN), where c is the probability to find a strong
bond. Hence there will be a singularity

pFsjgs pe J d 1i1 n(t +6 +ir /N )
N

e "dxln(1+t x )+const (2)so
for small t —T Ta. —The perturbation expansion for
small t has zero radius of convergence, so (2) is nonan-
alytic at t 0. An expression similar to (2) was derived
by Forgacs, Wolff, and Suto, ' who studied an Ising
model with correlated infinite pinning fields, pointing in
an up or down direction.

Next, consider uncorrelated disorder. Here we find
that the singularity is even weaker [namely, of the order
exp( —1/t )] than for the correlated case. The reason is
that in this case disorder has to be sampled from a two-

e "dxln(1+t x)+ const.

%e shall now substantiate these results by exact
analysis. We consider an Ising model on a square lattice
with vertical couplings Ji and random horizontal cou-
plings J2(n, m). The partition sum can be written as

(3)

rZ, +2coshPJ coshPJ2(n, m) .Z
n, m

(4)

where Z~ is a sum over closed polygons, which can be ex-
pressed in terms of Grassmann variables; see, e.g., Ref.
14. Here we follow the notation of Ref. 12:

derstood as follows. One needs (in the correct units)
spherical regions with only strong couplings. These re-
gions occur with probability exp( —

A, xR ) and lead to

—pF„„s-Je dRln(t +1/R )

dimensional distnbution. Quahtatively, this may be un-
where integrals are performed at each site and where

84 g [ziitr4(n, m) y2(n, m+ I ) +z2(n, m) y3(n —I,m) yi(n, m)+ [itriitr2+ itr3y4+ pi @4+y2itr3+ itr4y2+ y3yi](n, m)] (6)
n, m

involves zi tanh(PJi) and z2(n, m) tanh[PJ2(n, m)]. We perform the integrals with respect to itr2 and itr3 and square
the result. This leads to independent complex fields yi 4 and itri 4. The integrals over itr4 and y4 can be performed by
Fourier transformation in the m direction at fixed n, because Ji is nonrandom. The result is, with

iver denoting yi,

Zp -,Q( —2iz i sine), „DyDye
n, 0

(7)

where 8 2'/M with —M/2 (j~ M/2 for a system of size NM with periodic boundary conditions, and where
ia(m —m')

Bi g . . t —z2(n, m) (1 —z 1 )y(n, m) y(n —l, m') —z2(n, m') (1 —z )y(n —l,m) y(n, m')
n, m 2sMz i sin6
0', m

+ (z i + 1 —2z i cos8) y(n, m) y(n, m') +z2(n, m)z2(n, rn') (z i + 1+2z i cos6) y(n, m) itr(n, m') j .

(8)
In the MW model one chooses z2 independent of m and (8) is diagonalized by introducing Fourier transforms of itr and
y at fixed n If dis.order is uncorrelated, it appears in a nonlocal way in (8). The trick to avoid this is as follows. The
integral (7) may be written as det(CDE), where the matrix D„&„»is diagonal with . elements (zi+ I+2zicosO)/
( —2izisin8). This matrix is taken apart, and P is defined as the product CE. For large M, the determinant of D
simplifies and Eq. (7) becomes Z~ =detR, where

(Jititr)(n, m) [z2(n, m) 2 —1]itr(n, m)

1+z+g( —z i) ' 2 y(n, m') —z2(n, m) y(n —1,m') —z2(n + 1,m') y(n + 1,m')
m' 1 zf

in which disorder occurs only locally. The free energy
becomes

PF (In(2coshPJicosh—PJ2))+ —,
'

Jt p(E)dElnE, (10)

where p(E) is the density of eigenvalues of the matrix
&. The result (9) and (10) is exact and fully general. It
could be used, for instance, to study the ferromagnetic
phase transition. A promising route seems to be a super-
symmetric description either for p (E) (Ref. 10) or
for the internal energy. As compared to usual ap-

proaches, ' ' we note that (9) involves only a one-com-
ponent field. This is related to the fact that we only take
the horizontal couplings to be random. .

The integral in Eq. (10) will have a singularity when
an energy gap at E 0 closes. This will yield the
Griffiths singularities in zero field. We therefore investi-
gate the Lifshitz band tail in the density of states p(E)
at E 0, restricting ourselves to discrete distributions of
disorder. %'e shall assume that each random coupling
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J2(n, m) takes one out of k (k~ 2) different values

J2~ (J2 ~ & J2 q & & J2 k) with probability cj
—=exp( —AJ), where gj"-~c~ 1. The critical tempera-
ture of a pure system with all horizontal couplings equal
to J2 j will be denoted by T, J (T, ~

& T, 2
. & T, k=—TG). Further we shall use the notation

g=—tanh(PJ~) and z~ -tanh(PJ2~).
We first study the case of correlated disorder, where

J2(n, m) J2(n). Here a Fourier transformation in the
m direction introduces an angle 6. For general systems
the leading Lifshitz band tail in p(E) near E 0 was de-
rived in Ref. 10. Applying the method here, we find

p(E) -exp[ —A (E)], (ii)

tion" —ln(exp[ y—Ry+Eypl). In the present situation
it becomes

A(E) g' (rt 0 E)—p„—ln g c e """ ~ " ' ~ .
n

(i2)
Here q-2g/(I+/) and g =(1 —g)/(I+/), the dual
of g (the have been approximated by their 6 =0 values).
Minimalization of A(E) leads to a "classical" equation
of motion for the "instanton" p„.

Let us first consider T close to T, ; (i =1,2, . . . , k)
and assume that E and 0 are small. Then t—=z; —g* is
small and we can go to the continuum limit where
p„p(n) is slowly varying. To leading order, Eq. (12)
becomes

iP

A(t +rt 0 +( e.) dx'1; —
g y(ep+p") —ln I++—e4 —oo j wl

(i3)

where g = g . It was noted by Lubensky' that p(x) is
large in a large range of x values. The logarithm can be
neglected there and y(x) -cos(x Je)/Je gives the
minimum. Near 1x1-x/2&e the logarithm sets in and
brings an exponential decay of p. The leading value of A
comes from the former region, where the integrand
equals A,;. Thus p behaves as exp( —xX;/Je) for small e.
A more complete description of Lifshitz tails in one di-
mension was given in Refs. 17 and 18 by analysis of ex-
act Dyson-Schmidt integral equations. The full result
for the integrand density H will have the form

H(e) -exp( —xX;/Je)R(x/JE) (e 0+), (14)
where R is a periodic function with unit period. This re-
sult has to be inserted in (10), which leads to

~F„,s= (4~) ' „d+dH(e)ln(t +rl ~ +~ e) (15

in accordance with (2). The results (2), (14), and (15)
show two important aspects. First, like in the pure sys-
tem, the singularity is symmetric in temperature.
Second, we obtain a Griffiths singularity near each T, J.
The largest of them is, by definition, T~. Note, however,
that (at least) the smallest of them lies below T, :
GriEths singularities occur as well below the critical
temperature of the random system. ' The difference
with ordering of clusters above T, is that their surface is
essentially ordered; their bulk, however, is not yet or-
dered, and this brings the singularity.

A very similar singularity is present in the random sys-
tem near the critical point of any pure system having a
periodic arrangement of allowed couplings. As an exam-
ple we consider the behavior near the critical tempera-

ture T, ;J corresponding to a pure system where J2(2n)-J; and J2(2n+ I) JJ. In this case the dominant term
in the logarithm in (12) involves z; for n even and zj for
n odd. In the region where g is large, it can be eliminat-
ed at the odd sites in favor of p at even sites. This leads
to a similar problem as above, with

4( zz/(g +z;+z )
and

t -(g"—z;z, )/(g" +z'+z') '"-T —T, ;, .

Further (A,;+XJ )/2 replaces A J because half of the
relevant couplings equal J2; and half of them equal J2 j.
This example shows that a singularity of the forms (14)
and (15) occurs near a dense set of temperatures in the
interval T, &

~ T ~ Tg. It implies that the nonanalytic
behavior found by Grif5ths for small fields is also
reflected in the temperature behavior at zero field.

A different, one-sided form, F„„g-t'', of Griffiths
singularities in MW models was recently reported by
Shankar and Murthy. ' They derive the Griftiths singu-
larity at the critical temperature T, & connected to the
weakest bonds. The form of the singularity is assumed
to follow from Derrida-Hilhorst singularities in ran-
dom field Ising chains. However, the assumption (3.10)
of Ref. 19(b) misses, e.g., an oscillating factor following
from the more complicated exact result (4.23) of
Nieuwenhuizen and Luck. ' This questions the con-
clusion drawn in Ref. 19.

In case of uncorreiated random horizontal couplings,
still taking a finite number of values J2j, the Lifshitz
band tail (11) is determined by the minimum of the action

1+A(E) -g ~ —(I+E)v (n, m)'+g ( —g) ~ ~,—1m —m'1 v (n, m)v (n, m')
n, m le

r

—ln g cjexp —,zjp(n, m) —g( —g) ~ ~y(n —I,m')
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For T close to T, ; the term with j i will again
dominate the logarithm in the region of large to. Here
the continuum equation becomes

(E t—)p, with parameters as in (13). The solution
with lowest energy is proportional to the Bessel function
Jo. The leading contribution to A therefore gives

p(r '+ e) -exp( —X;v2/e), (17)

where v2 grlxp2 is the normalized volume of the
relevant elliptic region of pure couplings, with p. 2

2.40483 being the Grst zero of the Bessel function Jo.
Equations (10) and (17) prove the assertion (3) for the
case of uncorrelated disorder. As in the MW case, this
singularity occurs symmetrically near all critical temper-
atures T, J of related pure systems.

Also for uncorrelated disorder one will find a similar
Griffiths singularity near the critical point of any pure
system with a larger unit cell, e.g., for a checkerboard
arrangement of couplings J2; and J2 l. Consider, for in-
stance, the above discussed case with Jz; in even rows
and J2 J in the odd rows, but now for uncorrelated disor-
der. Going through the analysis we find that (17)
remains valid with, however, g and t —T—T, ;J defined
as in the corresponding problem with correlated disorder,
discussed above, and with (A,;+El)/2 again replacing X;.

In conclusion, without giving a rigorous proof of their
existence, we have derived the explicit, asymptotically
exact form of Griffiths singularities in the free energy of
two-dimensional Ising models in zero field, with correlat-
ed or uncorrelated random horizontal couplings. They
are logarithmic transforms of Lifshitz tails in the density
of states of a certain random matrix. Its form is con-
nected to a one-component field in a random potential,
which seems simpler than current approaches involving
two-component spinors. b' functions in the density of
couplings lead to symmetric Griffiths singularities, which
have a universal form. They occur near temperatures
connected to criticality of any periodic arrangements of
random couplings. This leads to a dense set of singulari-
ties in the Griffiths phase T, ~

~ T ~ TG. As a result,
the free energy is a nonanalytic function of temperature
in this segment. The singularities overlap and the sym-
metric form only applies to the leading singular behav-
ior, also at To. Griffiths singularities are found above as
well as below the critical temperature T„where fer-
romagnetism sets in. In the study of analytic properties
of the magnetization, however, Griffiths singularities
below T, are masked by the singularity of the order pa-
rameter at zero fj.eld, already present in the pure system.
Nevertheless, they give rise to critical slowing down in

dynamics both for T, & T & Tg and for T, &
& T & T,.

For having a better description of the Griffiths singu-
larities in case of uncorrelated disorder, it would be

desirable to know the form of Lifshitz tails outside the
asymptotic region in two-dimensional disordered sys-
tems. For a speci6c case in three dimensions this was
discussed in Ref. 8. Another interesting equation is what

happens for continuous distributions of disorder. For ex-
ample, for a uniform distribution one expects the same
location of singularities as for a binary distribution
where only the weakest and the strongest of the cou-
plings are retained; the form [Eqs. (10), (14), and (17)]
of the singularity, however, is expected to involve ln(l/e)
rather than X;. '

We hope that our results can be used for obtaining a
better understanding of the long-time dynamics, and that
our simplified form for the free energy will simulate
theoretical and numerical work.
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