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Nondit'usive Brownian Motion Studied by Dim'using-Wave Spectroscopy
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On a short-time scale, Brownian particles undergo a transition from the initial ballistic trajectories to
diffusive motion. Hydrodynamic interactions with the surrounding fluid lead to a complex time depen-
dence of this transition. We directly probe this transition for colloidal particles by measuring the auto-
correlation function of multiply scattered, transmitted light. We show that a quantitative interpretation
is possible because the transport of the light is diffusive, resolving a conflict in previous measurements.
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The trajectory of a Brownian particle on time scales
comparable to the viscous damping time reflects the in-
tricate interplay between the short-range, random molec-
ular forces and the long-range, hydrodynamic forces on
the particle. For short times, the particle motion is
"ballistic, " while for long times, the motion is diffusive.
The nature of the transition from ballistic to diffusive
motion is determined by the interaction of the particle
with the surrounding Auid. ' The Aow field, or vorticity,
established in the Auid when the particle moves, reacts
back on the Brownian particle, resulting in a persistance
of the motion. This hydrodynamic memory is manifest-
ed as a "long-time tail" in the decay of the velocity auto-
correlation function. Thus, the nature of the short-
time, nondiffusive, Brownian motion and the transition to
diffusive trajectories are sensitive functions of the hydro-
dynamic interactions between a colloidal particle and the
surrounding fluid. In this Letter, we use diffusing-wave
spectroscopy (DWS), in which temporal correlations of
multiply scattered light are analyzed, to probe the
motion of Brownian particles at much shorter time and
length scales than previously has been possible. Thus,
we are able to explore the hydrodynamic memory effects
which determine the behavior of the transition from
ba11istic to diffusive motion. Our data critically test
available theories and suggest the need to include inter-
particle hydrodynamic interactions. Finally, we also
resolve a current dispute concerning the fundamental
mechanism of the transport of radiation in a multiply
scattering medium.

Simple quantities describing the isotropic Brownian
motion of a colloidal particle suspended in a liquid are

&Ax (t ) & —= & [x(t ) —x (0)] &, one Cartesian component of
its mean-square displacement, and the autocorrelation of
its velocity, R(t) —=&v (0)v„(t)&; here the brackets indi-
cate ensemble averages. These quantities are connected
by the relation

&ax'(z)& -2D[i+ T(e '1 —1)], (2)

where the decay time T m/6tzzia is the ratio of the
particle's mass to its friction coefficient; here g is the
shear viscosity of the Auid and a the particle radius.
However, this simple theory does not take proper ac-
count of the development in time of the vorticity in the
liquid surrounding the moving particle, and a full hydro-
dynamic theory of Brownian motion yields a more com-
plex form for R(t) which, with use of Eq. (1), gives'

&~x'(z)& -2, (z —t)R(t) dt .

On a time scale short enough that R(t) =R(0), Eq. (1)
becomes lim, 0&Ax (i)& R(0) z . This result reflects
the fact that the acceleration of any body must be flnite
so that its short-time motion is ballistic, its displacement
changing linearly with time. At a time scale long com-
pared to the decay of its velocity fluctuations the motion
of a Brownian particle is a random-walk diffusion:
Equation (1) becomes lim, &Ax (i)& 2Di, where
the particle's diffusion constant D is given by D
=f0 dtR(t). Clearly the nature of the transition from
short-time ballistic to long-time diffusive motion is deter-
mined by the form of the velocity autocorrelation func-
tion R(t). The simplest theory of Brownian motion pre-
dicts an exponential decay of R(t) so that

+—i, ' 4 —~+,1
e + erfc(a+ Ji)—2 3 1 a'i

p [i,(5 —8pVp) ] '1' a+
c 'r

e 'erfc(a Ji)—
a—

(3)
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where

3 3~ (5 —8p'/p) '
a+ Jz„(l +2p'/p)

and p' and p are the densities of the particle and fluid.
The time scale for diffusion of vorticity across a particle
radius is z„a p/ri and is related to the friction time
scale, T- -', z, (p'/p).

Both Eqs. (2) and (3) exhibit the expected asymptotic
behaviors: ballistic motion at short times, (hx (z))
cx: z, and diffusive motion at long times, (hx (z)) cx: z.
However, the behavior of the transition between these
two regimes is very different. In the first case it is ex-
ponential. By contrast, in the case of the hydrodynamic
theory, the approach to the asymptotic diffusive regime
is slow: The second (Jr) term in Eq. (3) is less than 1%
of the first only for i ~ 10 ~„reflecting the effects of the
t long-time tail in R(r)

Brownian motion of suspended particles can be studied
experimentally by dynamic light scattering (DLS), the
analysis of temporal Auctuations in scattered laser light.
To cause an appreciable decay in the measured time
correlation function of the scattered intensity, a typical
path traversed by a scattered photon must change by
roughly one light wavelength, A. . This requires relatively
large motion of the particles in the usual case where sin-

gle scattering of the light is studied, so DLS is suitable
mainly for the regime of diffusive Brownian motion.
Nevertheless, several DLS experiments have, with dif-
ficulty, established the existence of the J7 term in Eq.
(3). The problem is the very small distance moved by a
particle in a time ~, : a very small fraction of its radius,
or only a few A. This difficulty can be overcome by the
use of diffusing-wave spectroscopy. In DWS an optically
dense sample is used so that a photon is scattered many
(-10 to ) 10 ) times inside the sample. Now the re-
quired difference of X, in the optical path length results
from the sum of the displacements of a large number of
particles, so the typical displacement of a single particle
can be very small. Thus DWS is sensitive to motions
over much smaller distances and times than conventional
DLS. Below we describe two DWS experiments. In the
first, the nondiffusive terms in Eq. (3) just begin to be
significant. However, in the second we make accurate
measurements at times much shorter than r„well into
the range of time over which the transition from ballistic
to diffusive motion occurs.

One motivation for the first set of experiments was to
resolve a conflict in the literature concerning the funda-
mental mechanism of the transport of light in a multiply
scattering medium. Pine er, al. found that classical dif-
fusion theory described the propagation of the multiply
scattered light so that its typical path length, and there-
fore the number of scatterings, increased as the square of
the sample thickness L. However, Freund, Kaveh, and
Rosenbluh reported a linear increase of optical path
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FIG. 1. Plots of lng~(z) vs delay times z: Curve a, polys-

tyrene spheres of radius 0.206 pm in water, wavelength
530.9 nm, cell thickness L 0.2 mm. Curve b, PMMA

spheres of radius O. SO pm in hexane, k 530.9 nm, L 1 mm
(offset for clarity). Inset: Same as for curve a except L=2
mm. Solid lines are theory calculated from Eqs. (3) and (4);
note the good agreement.

with L and suggested a theory for the "ballistic trans-
port" of light. Resolution of this conflict is an essential
first step if DWS is to used for quantitative measure-
ments.

To investigate these contradictory results we use ex-
perimental parameters similar to those used in Ref. 9:
aqueous suspensions of polystyrene spheres with a

0.206 pm and volume fraction p 0.1, contained in
flat sample cells with I. ranging from 0.1 to 2 mm. The
beam from a Kr+-ion laser was focused onto one face of
the sample. Multiply scattered light, transmitted
through the other face, was imaged (1:1)on a 200-pm
circular aperture and detected through a second aperture
placed —30 cm behind the first. Several different laser
wavelengths were used. We measured the intensity
correlation function directly in the time domain, using a
photon correlator. Spurious effects introduced at small
delay times (z~ 1 @sec) by electronic distortions and
after pulsing of the photomultiplier tubes were mini-
mized by splitting the light emerging from the detector
aperture equally into two separate photomultiplier tubes
whose outputs were cross correlated. ' The signal enter-
ing the shift register of the correlator was delayed by
about 1 psec by passing it through a long cable. With a
correlator sample time of 0.05 psec, this procedure pro-
vides reliable measurements of intensity correlation func-
tions with decay times as short as 0.3 @sec at both posi-
tive and negative values of delay time z (see inset, Fig.
1). Normalized field correlation functions g~(z) were
obtained from the measured normalized intensity corre-
lation functions g2(z) through the relation g2(z) 1

+p[g~(z)], where p is a factor ((1) determined
largely by the size of the detection aperture. Experi-
ments were performed at room temperature, —20'C.
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An example of a typical field correlation function is
shown in Fig. 1(a) for L 0.2 mm and A, 530.9 nm.
The inset of Fig. 1 shows the much more rapid decay ob-
tained from a sample 10 times thicker, L 2 mm. Both
correlation functions exhibit apparently well-defined ini-
tial decays, linear regions in the semilogarithmic plots.
We measure the first cumulants,

I ~
- —lim ]ng~(z),

d.-0 di

by graphical analysis of the data and plot these as a
function of L for three different values of X in Fig. 2.

To analyze these results we assume that the transport
of light through the sample is diffusive with a transport
mean free path I ." An expression for the Geld correla-
tion function is obtained by solving the diffusion equa-
tion with boundary conditions which ensure that the flux
of diffusing photons goes to zero a distance l* outside
the faces of the sample. For the experimental geometry
used we obtain

g)(z) cx:. . ., ,, „,„,fA(s)sinhs+e '" ']ds,
& (L/I')[2k &m'(i)&) '/'

(4a)

A(s)- (es —1)[ese '+ (sinhs+ es coshs)e ' ' ' ]
(sinhs +es coshs ) —(es )

(4b)

e-21*/3L, and k -2rrn/X, with n the index of refraction
of water.

If we assume (Ax 2(z)) in Eq. (4) to have its asymptot-
ic form, 2Dz, it can be shown from Eq. (4) that I ~

rxL
for L/1 )) I, as expected for diffusive transport. The

dependences of I 1 on L seen in Fig. 2 are certainly much
closer to this quadratic prediction of the photon diffusion
assumption than to the linear dependence found by
Freund, Kaveh, and Rosenbluh. Nevertheless, some
downward curvature is observed at short wavelengths
and large thicknesses when I 1 is large and g&(z) decays
rapidly. At these short times the nondifl'usive terms in

Eq. (3) cannot be neglected. If the full expression of Eq.
(3) is used in Eq. (4) to calculate g~(z), it is no longer
possible to define an initial slope (see inset, Fig. 3). Ini-
tially, ]ng&(z) curves downward, reflecting the short-time
dependence of (hx (z)) or z; at longer times it curves
upward due to the contributions from different photon
path lengths s in Eq. (4). However, we can calculate
from Eqs. (3) and (4) the value of —d]ng&(z)/dz at the
point of inflection, d 1ng~(z)/dz 0, and assume that
this is equivalent to the apparent Grst cumulant deter-
mined graphically from the data. The results of this
operation are shown as the lines in Fig. 2; agreement be-
tween experiment and theory is excellent. The only pa-
rameters fitted in this comparison are the transport mean
free paths I . We obtain h 25.7 pm for A, 647.1 nm,
I 21.5 pm for A, 530.9 nm, and I 14.9 pm for

406. 1 nm, which compare favorably with the values
22.2, 20.3, and 16.2 pm, respectively, calculated from
Mie scattering theory.

From this set of measurements we conclude the fol-
lowing: (i) the transport of the photons is diffusive; we
find no evidence for the ballistic transport of photons
suggested by Freund, Kaveh, and Rosenbluh. 9 (ii) The
short-time motion of the Brownian particles is not dif-
fusive and is readily accessed by DWS.

To study this nondiffusive Brownian motion in greater
detail, we can increase i, and thus extend the non-
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FIG. 2. Apparent erst cumulants I ] for polystyrene samples
as functions of cell thickness L and wavelength X (6, 647. 1 nm;
o, 530.9 nm; o, 406. 1 nm), determined by graphical analysis of
correlation functions g~ (z). Solid lines are —

d luge(z)/dz a«
such that d2lng~(z)/dz 0, where g~(z) is calculated from
Eqs. (3) and (4). The dashed line is simple photon diff'usion

theory, 1 I ~L .

TIME (pn)

FIG. 3. Main plot: Time-dependent diA'usion coefficient
determined from the slope of g~(z) for small z. Solid line, ex-
periment; dash-dotted line, exponential theory [Eq. (2)];
dashed line, hydrodynamic theory [Eq. (3)]. Inset: g&(z) mea-
sured for the PMMA sample with correlator sample time 0.05
psec; solid line is g&(z) calculated from Eqs. (3) and (4).
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diff'usive regime to longer times. This is accomplished by
using spheres of polymethylmethacrylate (PMMA) with
radius a 0.5 pm, &=0.15, and suspended in hexane
which has p 0.659 g/cm and rl 0.326 cP. For this
system, r, 0.51 @sec to be compared with 0.042 @sec
for the polystyrene system. Figure 1(b) shows the field
correlation function obtained from the PMMA sample in
a cell of thickness L 1 mm with light of wavelength

530.9 nm. Although the overall shape is similar to
that of the polystyrene spheres shown in the same figure,
a slight downward curvature at the shortest delay times
is evident, reAecting nondiffusive behavior of &h,x (z)).
Accordingly in the inset of Fig. 3 we show a measure-
ment made with correlator sample time 0.05 @sec, 30
times smaller than in Fig. 1(b). Now the downward cur-
vature is marked and the initial slope of 1ng~(z) is close
to zero. Note that here g1(z) decays by only 5% and
that the shortest delay time corresponds to z= z„/10.
The solid line in Fig. 1(b) is a fit by Eqs. (3) and (4)
with only I as an adjustable parameter; this gives I*

112 pm, to be compared with the calculated value of
122 pm. These longer-time-delay data are relatively in-
sensitive to the effects of the nondiffusive motion, thus
providing a reliable measure of I*. The solid line in the
inset of Fig. 3 is calculated from Eqs. (3) and (4) using
this fitted value of I*. While experiment and theory
show the same trends, slight differences are apparent.
An alternative way of presenting the data follows from
recognizing that, for small z, Eq. (4) can be expanded to
become g~(z) 1 —8(L/1 ) k (bx (z)), where 8 de-
pends weakly on L/l*; here B 0.425. Thus the mean-
square displacement (b,x (z)) can be calculated directly
from Fig. 3. We define a time-dependent diffusion coef-
ficient by D(z) - —,

' d(Ax (z))/dz [-foR(t)dtl and es-
timate it by numerical differentiation of the data. The
results are sho~n in Fig. 3, compared with the predic-
tions of the exponential and hydrodynamic theories [Eqs.
(2) and (3)]. Again the data follow the trend of the hy-
drodynamic theory, although with some differences ap-
parent. Note that the smallest measured value of D(z)
is -0.2D so that the experiment probes well into the
transition from ballistic to diffusive motion.

The analyses given above of both experiments have as-
sumed that interactions between particles can be neglect-
ed. At volume fractions of 0.1 and 0.15 this is certainly
too simple an assumption. Inclusion of interactions will
lead to significant theoretical complications. Firstly, a
single scattering event will probe collective motions of a
group of particles. Secondly, the diffusive photon paths

will be determined not only by the particle's form factor
but also by the suspension's structure factor. ' Interac-
tion effects may well be the cause of the disagreement
between experiment and theory found in the PMMA
measurements. A full theory must also include time-
dependent hydrodynamic interactions ' between differ-
ent particles as well as the "self-hydrodynamic interac-
tion" expressed by Eq. (3).

In conclusion, we have verified that the transport of
light in a multiply scattering medium is diffusive and
have used DWS to quantitatively study new physics at
very short length scales by probing the transition at short
times from ballistic to diffusive motion of a Brownian
particle. In future work we intend to make a detailed
test of Eq. (3) by using a more dilute PMMA sample
and to attempt to investigate time-dependent interparti-
cle hydrodynamic interactions in concentrated samples.

We thank R. H. Ottewill and D. M. Metcalfe for pro-
viding the PMMA sample.
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