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A learning algorithm is developed to build a dynamical model from complex spatial data consisting of
discrete values on a lattice evolving in time. The resulting dynamical system is a cellular automation,
and may be used for forecasting or for regenerating global spatial patterns. Part of the learning algo-
rithm is a novel application of the genetic algorithm, originally developed in the field of machine learn-
ing. We outline extensions of this method to construct models for spatial dynamics that have continuous
variables as well.

PACS numbers: 89.70.+c, 02.70.+d, 06.50.0c

In this paper, we consider the experimental analysis of
complex spatial patterns. Efforts in this direction have
only begun our work with spatial data is based on the
use of a learning algorithm to build a model from data.
This approach has been implemented for time-series
analysis, ' ' and suggested for the analysis of spatial

Wc present a learning algorithm designed to build
models from spatial data that consist of a sequence of
two-dimensional images with discrete values at discrete
lattice sites. The spatial extent of the data makes the
problem more complicated than for the time-series data,
but the discreteness simplifies the problem. After
describing a learning algorithm for this type of data and
testing it on artificially generated data, we will comment
on combining this approach with that developed for
continuous-variable data. The resulting learning algo-
rithms will search an enlarged space of models, and will
enable us to further close the gap between experiment
and theory.

Thc experimental system at which this analysis is
aimed is dendritic solidification (this application will ap-
pear in a later paper). In this case, binary values at each
lattice site are obtained by denoting the presence of solid
by one and the absence of solid by zero. In other cases,
binary data may be obtained by data-reduction tech-
niques. " In any case, we will assume that the data take
thc form of a temporal sequence of patterns of ones and
zeros on a 1attice. We consider the two-dimensional case
because we aim to use the techniques for two-
dimensional experimental data. The analogous formula-
tion for one dimension is completely straightforward; for
three dimensions the generalization is also straightfor-
ward, but the data-gathering technology typically does
not exist.

As in the case of the time-series data mentioned
above, thc object of the learning algorithm will be to
construct a dynamical model for the observed data. This
is accomplished by searching a space of dynamical rules.
We wiH. assume spatial locality for the dynamical rule
that takes patterns to patterns. A hypothetical deter-

ministic rule would have the form of a cellular-
automaton (CA) rule. ' The possibility of "inertial
effects" in the dynamics suggests the consideration of
rules for which the future depends on more than a single
past state. When the inevitable presence of noise is in-
cluded, we find that the task of the learning algorithm is
to search through the space of probabilistic CA rules.
Such a rule is given by the conditional probability distri-
bution P(s ) s i, . . . , s„), with s being the future value of
the site that we wish to predict and s ~, . . . ,s„being the
values of the n sites of a space-time neighborhood tem-
plate in thc past. Thus, in our context, there is a one-to-
one correspondence between rules and templates used to
construct P(s i si, . . . ,s„).

Though we would like to search through arbitrary
templates in space-time, computational limitations lead
us to choose a template as large as memory allows, and
then to explore the space of subtcmplatcs. We chose
the two-time-step master template illustrated in
Fig. 1. Given a large temporal sequence of images,
P(s i s i, . . . ,s„) is approximated by collectlllg a
frcquency-of-occurrence histogram.

The conditional probability histogram P(s ) s i, . . . , s„)

FIG. 1. The template in space-time that is searched by the
learning algorithm. Mutual information was computed be-
tween the future cell and the nearby cells for two time steps in

the past.
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is itself a probabilistic dynamical rule, and may be
iterated and compared to the results of the actual data.
It is not, however, necessarily the simplest rule that
could be constructed from the data; to see this, consider
constructing P(s

~ s~, . . . , s„) for test data generated by
the identity rule (simply a fixed pattern repeated in
time). The future value depends only on a single cell of
the past template, so all the remaining entries in the dis-
tribution are irrelevant. The learning algorithm should
seek this out and find the simplest template that still cap-
tures the essential dynamics.

A measure of the relevance of past-site values to the
future-site value is given by the mutual information. '

It is computed for a subtemplate (s~, . . . , s ) [where
these are a subset of the original (s~, . . . , s„) with
m (nI from P(s

~ s~, . . . ,s ) by

I($~$1~ ~ ~ ~ i syph' )
P(s, si, . . . , s )V n(

+KSJ+%$1s ~ ~ ~ asm J

where the joint distribution P(s, s&, . . . , s ) is related to
the conditional distribution P(s

~ s~, . . . , s ) by

P(s, si, . . . , s ) P(s isi, . . . , s )P(si, . . . , s );
the sum is taken over all configurations (s~, . . . , s ) and
both possible values of s. Since we are searching for a
rule which describes the behavior of a single site of the
lattice, the maximum amount of mutual information that
can be extracted for neighboring space-time templates
about a single site will be the amount of information
measured from observing the behavior of single sites.
The maximum amount of mutual information a space-
time template can provide is I,„H(s), where H(s) is
defined as H(s) = —QP(s)log2P(s—), the sum taken over
all possible values of s (0 or 1). The learning algorithm
should seek a rule given by a template that yields mutual
information as close to I,„as possible.

A brute force approach would be to try all possible
templates to 6nd the optimal one. However, there are so
many that this is infeasible, so the space of templates
must be searched by some other means. Another ap-
proach is to build up a template cell by cell by 6nding
the single cell that has the highest mutual information
with the future, 6xing it, and looking for a second cell
which may be added to the first to give the highest mutu-
al information, and so on. This approach is not satisfac-
tory because it cannot detect "many-body" informational
correlations that are present in general.

The genetic algol&thm, ' a technique developed in
machine learning, is well suited for the task of searching
the space of templates, given that each template has an
associated "6tness. " In this context, application of the
genetic algorithm begins with a set of test templates
chosen at random. The learning takes place by an evolu-
tionary dynamic: Every generation the templates are or-
dered by 6tness and the less fit ones discarded. The poor

templates are then replaced by new ones obtained from
th.e old ones by the application of two genetic operators:
point mutation, which corresponds to adding a new cell
to a template or taking one away; and crossover, which
produces two new templates from two old ones by mak-
ing an arbitrary cut in space-time that divides the tem-
plates into two pieces, and cross matching the pieces.
Repeating the evaluation, ranking, and replacement
evolves the set of templates to be increasingly fit. We
can think of the 6tness function as de6ning a surface, or
"landscape, " and the genetic operators move us about on
the landscape. Point mutation therefore corresponds to a
local displacement on the landscape, while crossover pro-
duces the larger jumps needed to seek out a global max-
imum of the landscape.

Clearly, it is crucial that we choose the fitness function
judiciously if the genetic algorithm is to be an eA'ective

tool. As we stated above, our algorithm should find a
subtemplate which maximizes I(s;s ~, . . . , s ). On the
other hand, as the number of sites in a subtemplate, m,
increases, I(s;si, . . . , s ) becomes increasingly dificult
to evaluate for 6nite data sets. For example, if we were
to record simultaneously the outcomes of two random
events, we would expect the mutual information between
these two (finite) sets of measurements to be zero. It
can be shown, however, that if event 1 has X possible
outcomes and event 2 has Y possible outcomes, and we
make only N simultaneous m.easurements, the mutual in-
formation that we estimate using a frequency-of-
occurrence histogram will not be zero but will be propor-
tional to (X—1)(Y—I)/¹ In our application A' 2,
and if we consider a subtemplate comprising m sites,
F 2 . Our 6tness function should weigh any increase
in I(s;s&, . . . ,s ) that we gain by increasing our tem-
plate size, m, against the increased inaccuracy of our
statistics. ' %'e have therefore de6ned our itness func-
tion as F I—2 /¹ In the ideal situation where
K~ ~, we have I I and the genetic algorithm should
search out a template that maximizes I(s;s i, . . . , s ).
In this limit, our 6tness function is the same, up to an
added constant, as the model criterion used in Ref. 1,
based on indeterminacy. For 6nite-size data sets, howev-
er, the fitness of a given template will peak when

I(s;si, . . . , s ) I(s;si, . . . , s -i)-2—/%.

Notice that the second term of the fitness function also
provides a mechanism for choosing between two tem-
plates of di6'erent length and equal I.

We have applied the learning algorithm to two
diferent types of training data. The 6rst test data set
was generated by an eight-nearest-neighbor, one-time-
step CA rule. The neighborhood of this rule is subsumed
by our twenty-site, two-time-step master template. The
genetic algorithm found the appropriate template and
reproduced the patterns exactly.

The learning algorithm was also applied to patterns
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generated by a twelve-nearest-neighbor, one-time-step
CA rule (Fig. 2). In this case the task of the learning al-
gorithm is more difficult; the learned rule can only be an
approximation of the CA rule, since the learning tem-
plate does not include the entire template used for gen-
eration of the pattern. This type of missing information
will be typical of patterns produced in real data where
there exist physical variables to which the experimenter
has no observational access. Successive applications of
the genetic algorithm to these data produced a set of op-
tirnal templates, each member of which was roughly
equally fit. ' The learned templates are shown in Fig. 2.
Each template included all eight of the sites shaded
black and four of the eight gray-shaded sites, chosen
such that the same spatial position was not selected in
both the past and the present (i.e., the temporal projec-
tion of any learned template was identical to the tem-
plate used by the CA rule). In both simulations, approx-
irnately 1.5 x10 data points were used.

In Fig. 3 we compare the results of the learned rule to
those of the CA rule used to generate the training pat-
terns. Both rules start with the same two-time-step
"seed" and both are iterated independently for 10 time
steps. Although not exact, the regenerated pattern cap-

Learned Template

FIG. 2. The sites used (black squares) to create the test
data. Note that not all of the sites used by the cellular-
automaton rule are available to the learning algorithm. The
cellular-automaton rule used the twelve nearest neighbors.
The learned template consists of the four second-nearest neigh-
bors of the present, four third-nearest neighbors of the past,
and some combination of four second-nearest neighbors from
either the present or the past such that no spatial position is
selected twice (i.e., the temporal projection of any learned tem-

plate is identical to the template used by the cellular-
automaton rule).

FIG. 3. The top two patterns represent a two-time-step seed.
The pattern on the lower left results when the CA rule is
iterated for 10 time steps. The pattern on the lower right is the
result of 10 successive applications of the rule selected by the
genetic algorithm as most fit. Both rules begin with the same
seed pattern and then evolve independently.

tures the main characteristics of the training set. When
compared directly to patterns produced by the original
rule over a single time step, we find that our learned rule
produces correct behavior about 96% of the time, and
the template contained about 92% of the total available
information.

The efficiency and scope of the learning algorithm may
be increased in two ways. First, storing the probabilistic
CA rule in the form of a histogram as we have done is
inefficient if the table is sparsely filled. In such cases the
rule is best stored in the form of a tree data structure.
Another generalization of the present approach is to alss

low the learning algorithm to explore variable spatial
and temporal resolutions for the experimental data (we
have presented the analysis for a fixed choice of spatial
and temporal resolution). The data may be converted to
a pyramid data structure that contains the original
data as well as successive averages over length and time
scales, so that the template search can take place to
select the most relevant scales as well as the most
relevant spatial orientation.

The question remains: What is the physical meaning
of a rule if one can be learned? The simplest interpreta-
tion of a "good" rule is that at the particular spatial and
temporal resolution embodied in the learned rule, a sim-

ple description of the dynamics exists. One might
suspect the simplicity of the learned rule to be rejected
in phenomenological intuition, but such intuition may be
apparent only after the rule is constructed, and indeed,
may not be apparent at all.

A more particular question is, how may such a rule be
related to theoretical models? If a good rule is learned,
then there is an indication that there should be a reduc-
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tion from any continuum model to a simpler discrete
model. On the other hand, it is possible to use the same
techniques outlined here to search larger spaces of mod-
els that include variables that are not directly accessible
from the data. In the case of solidification, it is certainly
clear that the binary-state data exclude many physically
relevant variables, e.g., the temperature field. One can,
nevertheless, search through simple models that include
continuum quantities such as temperature. ' Such
models are typically characterized by a set of continuous
parameters (e.g., coefficients for terms involving spatial
derivatives). In such cases, the map-fitting procedures
used in the time-series learning algorithms must be gen-
eralized to the fitting of local spatial maps to approxi-
mate a partial differential equation. Map fitting, must,
however, be augmented by a learning algorithm to
search for the "relevant" spatial templates, such as the
genetic algorithm methods we present here. Though
computationally more demanding, learning in these en-
larged spaces could provide solid links between data and
theory.

Vr"e appreciate helpful conversations with S. Omohun-
dro, R. Shaw, D. Farmer, and J. Crutchfield. N.P. also
appreciates helpful conversations at the Aspen Center
for Physics session on complex dynamics. This research
was supported by Grants No. PHY86-58062-PYI from
the National Science Foundation and No. N00014-88-
K-0293 from the Once of Naval Research.

(')Inet addresses: [meyer, n, fcr]complex. ccsr.uiuc. edu; use-
net addresses: [ihnp4, ucbvax]!uiucdcs!complex! [meyer, n, fcr].

'J. P. Crutchfield and Bruce S. McNamara, Complex Sys-
tems 3, 417-452 (1987).

~J. P. Crutchfield, Physica (Amsterdam) 100, 229-245
(1984).

J. P. Crutchfield and K. Kaneko, in Directions in Chaos,
edited by Hao Bai-lin (World Scientific, Singapore, 1987).

4J. A. Vastano and H. L. Swinney, Phys. Rev. Lett. 60,
1773-1776 (1988).

5S. Ciliberto and J. P. Gollub, Phys. Rev. Lett. 52, 922-925
(1984).

Y. Sawada, A. Dougherty, and J. P. Gollub, Phys. Rev.
Lett. 56, 1260-1263 (1986).

J. D. Farmer and J. J. Sidorowich, Phys. Rev. Lett. 59,

845-848 (1987).
J. D. Farmer and J. J. Sidorowich, Los Alamos National

Laboratory Report No. LA-UR-88-901 (to be published).
P. Grassberger, University of Wuppertal Report No. WU-

B-87-8, 1987 (unpublished).
' A. J. Cremers and A. Hubler, Z. Naturforsch. 42a, 797

(1987).
"A method used by S. Ciliberto and M. A. Rubio [Phys.

Rev. Lett. 60, 286 (1988)] for one-dimensional spatial fluid

data entails measuring the average noise power over a short
time window at a particular lattice site to determine whether
the flow is laminar (zero) or turbulent (one).

t~J. von Neumann, in Theory of Self Repro-ducing Automa
taedi, ted by A. W. Burks (University of Illinois Press, Urbana,
1966).

' C. E. Shannon and W. Weaver, The Mathematical Theory
of Communication (University of Illinois Press, Urbana,
1962).

R. S. Shaw, The Dripping Faucet as a Model Chaotic Sys-
tern (Ariel Press, Santa Cruz, CA, 1984).

~5A. M. Fraser and H. L. Swinney, Phys. Rev. A 33, 1134-
1140 (1986).

' A. M. Fraser, "Information and Entropy in Strange Attrac-
tors" (to be published).

' J. Holland, Adaptation in Natural and Artiftcial Systems
(Univ. of Michigan Press, Ann Arbor, 1975).

' The reader will notice that the factor limiting the size of
our template is strictly empirical. One might be tempted to
demand that the fitness function favor a smaller template on
the grounds that it is less complex and hence desirable. There
is, however, no a priori reason to believe that the representa-
tion we have chosen for our rules is the most efficient and that
a longer template could not be translated into a more efficient
rule than could a shorter template. Incorporating a measure of
algorithm complexity in a fitness function might only bias it to
a specific representation space.

' Because of the symmetry of the CA rule used to generate
these data, there are several maxima of equal size in the fitness
landscape. This enabled the genetic algorithm search to work
equally well without the use of crossovers.

P. J. Burt, Computer Graphics and Image Processing, 16,
20 (1981).

N. H. Packard, in Science on Form, edited by S. Ishizaka,
Y. Kato, R. Takaki, and J. Toriwaki (Kluwer Academic, Hing-
ham, MA, 1986).

F. Family, D. E. Platt, and T. Vicsek, "Deterministic
Growth Model of Pattern Formation in Dendritic Solidifica-
tion, "Emory University report, 1987 (to be published).

1738


