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Low-Field Magnetic Response of Complex Superconductors

M. Sigrist, T. M. Rice, and K. Ueda(')
Theoretische Physik, Eidgenossische Technische Hochschule-Honggerberg, 8093 Ziirich, Switzerland

(Received 25 May 1989)

Solutions of the Ginzburg-Landau equations for a complex superconducting phase are presented for
regions close to a domain wall and to the surface. The finite local magnetization found at these inhomo-
geneities yields a small magnetic response via a movement of domain walls in an external magnetic field.
We examine line defects in the walls which are vortices enclosing a fraction of the universal flux quan-
tum.

PACS numbers: 74.20.—z, 74.20.De, 74.70.Tx

In this Letter we examine the low-field magnetic prop-
erties of superconductors in the intrinsically complex
phase. Such superconducting phases are distinguished
by the property that they are not eigenstates of the
time-reversal operator. Volovik and Gor'kov have previ-
ously pointed out that they can have unique properties
such as domain walls with persistent currents and vor-
tices with a nonuniversal Aux quantum. ' There has been
much speculation about the possibility of similar states
in the literature on high-T, superconductivity. Mota
and co-workers report that high-T„heavy fermion and
organic superconductors, show unusual behavior at
low magnetic fields (H(H, (), i.e., strongly time- and
history-dependent magnetization with continuously vary-
ing magnetic Aux. With these motivations we examined
in detail a domain wall (DW) between two domains re-
lated by time reversal and a fractional vortex, analogous

f——l (IuI'+ Iv I')+(s + l p»(IuI'+ Iv I')'—

to a Bloch line defect in the DW. Individual domains
have net magnetic moments and a net force results on a
DW in an external magnetic field. Further, the intersec-
tion of a DW with a surface leads to unusual magnetic
structures which can be modified to incorporate a net
magnetic Aux.

As an illustration we consider a complex (even-parity)
superconducting phase in a tetragonal crystal (point
group D4), ) with a gap matrix h(k) cLio~k, (k„+ik~)
It has a twofold degeneracy because of broken time-
reversal symmetry. Its order parameter belongs to the
I 5+ representation of D4y, with basis functions

y)(k) k k y2(k) k ky A(k) icryk)yj(k). (1)

We use the complex coeKcients XJ- to formulate the
Ginzburg-Landau (GL) theory. The GL free-energy ex-
pansion in dimensionless variables is
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with F~ F~-(H,'('/4x) J—d rf(r), d, =&, —iu, (j
x,y, z). Here r is the space variable in units of the

average coherence length g and the vector potential
A J2H, ba (8, London penetration depth) and b 8
xa. The real coefficients p; and K; are O(1) and satisfy
the relations 4p2 )p3, p2 )0 and K(+K2 1. The order
parameter (u, v ) ~ (X),X2) is defined to be (u, v )
-(1,~ i) in the homogeneous phase.

Single do@cain wall. —We consider degenerate phases
separated by a DW in the y-z plane [(u, v )~ (1, +' i )
for x~ +' ~]. Varying Eq. (2) with regard to the order
parameter and the vector potential leads to seven non-
linear coupled differential equations. We find self-
consistent solutions with periodic boundary conditions

t
(many parallel DW) by a numerical relaxation algo-
rithm similar to that used by Thuneberg. In Fig. 1(a)
the order parameter, parametrized as (u, v ) [ I u I,
Iv I exp(iy)]exp(i((), is shown. Note I u I and I v I are
reduced slightly from their bulk value 1. The relative
phase y changes from —)r/2 to x/2 in a width

g —(K2/p2) ' which corresponds to the approximate
solution of Volovik and Gor'kov. ' The total or "Joseph-
son" phase p also becomes finite, but tends to the same
value (p 0) on both sides for large I x I; i.e., there is no
current through the DW.

The complex structure of the gradient terms in Eq. (2)
leads to an unusual expression for the supercurrents in
the London equation 8 & (8 & a) j:

x' j ( ) (K) I u I +K2I v I )(tl ())y a ()))+K2(() I v I 8&())y+K3(&)( )(( ~)( )) I u I I v I cosy

K3 [( I u I 8) ( ) I
v I I v I (ly(x) I u I ) sin y+ I u I I v I cosy By(x) y]

We neglect the z component, since the geometry used assumes homogeneity in this direction. With the condition j„o
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for all x, j~ (neglecting the vector potential) has a term

K& I u I I v I cosyc) y
K2I v I'

, KI I u I'+K2 I v I

' (4)1

2

which generates a spontaneous supercurrent centered on
the DW parallel to the y axis, because cosy8„y is finite
near x -0. In Fig. 1(b) the result of the self-consistent
solution is given for j~ and the generated magnetic 6eld
b, . Screening countercurrents lead to a decay of 6, with

the length scale b ( x(). The approximate solution
gives a Inaxllllal value of bg Ks(K2 0.5)/K' [ 1 25
&10 in the case of Figs. 1(a) and 1(b)]. Since b, is
an odd function of x there is no net magnetization.

Vortex on a domain wall. —The DW shown in Fig. 1

is twofold degenerate. The relative phase y passes from—n/2 to ~/2 through y 0, but the way through y rr is
clearly degenerate. If on one D%' these two structures
are present, then they are separated by a line defect
similar to a Bloch line in a ferromagnet. Let us choose
this line to be parallel to the z axis. If we go around it,
the relative phase y winds once:

()Q y ds 2m[ —x/2~ 0~ +lr/2~ &~ 3&/2(= —~/2)1.

K Ivl'
KI I u I'+ K I v I'

K3 I u I I v I

KIlul'+K lvl' '
An approximate calculation of the 6nite flux enclosed
leads to ( I u I

=
I v I )

(~ ads =n@o+K2@p+0(K3/Ir ), (6)

(5)

Hence this line must be a special singularity of the order
parameter where one component vanishes to ensure the
topological stability of this structure. The magnetic flux
can be calculated by integrating f(8p —a)ds along a
rectangular path around the line where the parts parallel
to the DW are so distant that fay dy gives no contribu-
tion. The perpendicular part is obtained by the solution
of the single DW problem using the fact that j, 0;

I
where n is the winding number of the total phase p.
is the universal flux quantum in dimensionless units
(4o 2n). Since 0 & K2 & 1, this new type of vortex can
contain a magnetic flux which is a fraction of +0..
CI = ~ K2@o, + (K2 —I )+o ( ~ depends on the winding
sense of y). Two neighboring lines on a DW enclose to-
gether an integer number of +0. The winding sense of y
is opposite in the two vortices so that the only ~inding
variable is p which leads to the Abrikosov result
e n+0. However, the creation and annihilation of frac-
tional vortices can be diNerent. It is not unlikely that a
usual vortex trapped by a DW will decay into two frac-
tional vortices. This is indicated in the calculations by
Schenstrom et a/. for the analogous superconducting
phase of hexagonal Upt3, where a spatial splitting of the
vortex into two parts is observed. A rough estimate of
the energy expense 8 to create a fractional vortex in the
case K1,2-0.5, Ks-0.5, n-0, and g 1«(«x gives

1n(x()/4, whereas a usual vortex needs e' lnK in di-
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FIG. 1. Self-consistent numerical solution of the GL equa-
tions for the domain wall at x 0 with P2 0.1, P3 —0.6,
ICI 0.7, ECl 0.1, and Ir 4 (Ref. 7). (a) Order parameter

l I u I ~ I
v

I exp(iy)] exp(ip). 1, I
u I; 2, I v I; 3, y; 4,

10xp. y(x) is an odd and Is(x) is an even function of x. (b)
Magnetic field and current distribution. 1, 10 b; 2, 10 Jy.
b, (x) is an odd and j~(x) is an even function of x.
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FIG. 2. The magnetic field distribution b, ( yx) in the self-
consistent numerical solution of the GL equations for a line de-
fect on the DW with the parameters of Fig. 1. The magnetic
field b, has two peaks due to the superposition of the DW and
vortex currents. The calculated critical field is h = 2.6x10
and the enclosed magnetic flux is @= 1.6.
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mensionless quantities. From this energy we obtain a
critical magnetic 6eld h Z/ 2x @ ln(xg)/4x, which is
smaller than the standard lower critical Geld h, ~

lnx/2x . This agrees with very recent calculations by
Izyumov and Laptev for a simpli6ed theory of fractional
vortices.

The currents in the D%' distort the vortex due to the
Lorentz force. Figure 2 shows the result of a self-
consistent numerical calculation of the magnetic field
distribution. The unusual form arises from a complicat-
ed superposition of the DW and the circular currents.

Surface magnetization It.—is not simple to 6nd the
correct boundary condition (BC) for the order parameter
at the surface. DiA'erent surface scattering properties
of the two basis states in Eq. (1) produce a different
suppression of the components u and v. Using group-
theoretical methods we introduce general BC by adding
all second-order terms to Eq. (2) allowed by the lower
symmetry at the surface. For an infinite planar surface,

y 0, the remaining symmetry of D4p is the group
C2„(x)and the surface terms are

f.-b(y)&gi(l~ I'+
I I')+g (lv I' —Iul')]. (7)

The coeKcients g; are real. An additional BC prohibits
current How through the surface: (8&b) y(y -0) -0.
With the assumption g~ =g2 & 0, I u I is not affected at
x 0, but I

v I is stronglly suppressed. Neglecting a and
setting I u I

—= 1 we 6nd

I v I+2a (I v I lv I ) 0 (8)

«~ &, I v I+g I ~ I ) l, -o-0, (9)

with a (1+4P2 —P3)/8K~ and g-g~+g2. The solu-
tion is

lv I -tanhIa(y —yo)i, 2ayo-sinh '(2X,~/g). (10)

The fourth term of Eq. (3) again generates a super-
current parallel to the surface;

+3 . +3 Csin/
tie Iv Isiny=2x' 2x' cosh'[a(y —yo)]

The magnetic field due to this current is screened to-
wards the interior, but now there is a 6nite net magneti-
zation concentrated near the surface, rn, =IC3siny(l

~a/g)/2x per unit surface area (g ). Thus a single
domain sample has a 6nite magnetization produced
spontaneously by the broken-time-reversal symmetry of
the superconducting phase.

Since in the domains (u, v) (1, i-i)(y + x/2) this
magnetization has opposite sign, there will generally be
regions of different surface magnetization separated by
DW. An external 6eld h, „&introduces a difference in the
Gibbs free-energy density g f 2x b—h,„& between
domains causing a force of magnitude —2x m, i.hgxt.
So near the surface the DW moves to favor the domain
with m, h,„&,, & 0. This effect leads to a small decay of
the diamagnetic response of the superconductor. The
time scale can be rather long, if the D%' is pinned on im-
purities that require thermal activation. It is clear that
such slow processes can give rise to irreversible behavior
in the magnetic 6eld.

A domain mal/ ar the surface —When . a DW inter-
sects the surface the simplest structure is that its
currents convert continuously into surface currents (Fig.
3) so that the current Aows around each domain, posi-
tively for the domain (1,+i) and negatively for (1,—i ). ' Essentially this is con6rmed by the self-consistent
calculation. However, the solution shows more structure
than expected (Fig. 4). In one of the two corners formed
by the surface and the DW a peak in the magnetic 6eld
appears. It has no counterpart on the other side of the
DW. The choice of DW (i.e., y through 0 or n) deter-
mines the side on which this peak occurs. Therefore this
peak has a similar origin as the line defect on a DW and
can be considered as a precursor of a fractional vortex
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FIG. 3. The simplest current distribution when a DW inter-
sects a surface. dwc, domain-wall current; sfc, surface current;
sc, screening current.
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FIG. 4. The magnetic field distribution b, (x,y) in the self-
consistent numerical solution of the GL equations for a DW at
a surface with the parameters of Fig. 1. The magnetic field b,
varies smoothly from the DW to the surface, where it leads to a
net magnetization. A significant peak occurs on one side of the
DW depending on whether y passes through 0 (shown above)
or x.

1729



VOLUME 63, NUMBER 16 PHYSICAL REVIEW LETTERS 16 OCToBER 1989

which would appear in a parallel external field. Without
such a Geld this peak is a magnetic flux trapped in a po-
tential well due to the Lorentz force of the DW-surface
currents and the screening countercurrents. The magni-
tude of this flux is not a topological charge, rather it de-
pends on the strength of the trapping well.

In conclusion, we have shown that the low-field behav-
ior of nonunitary superconducting phases is a complex
problem with more ways of incorporating magnetic flux
than by introducing Abrikosov vortices. This leads to
various possibilities to identify such phases. The experi-
ments of Mota and co-workers ' are encouraging al-
though all other possible mechanisms need to be careful-
ly ruled out.
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