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We calculate the optical response of silicon, e~(co), below the optical-absorption threshold and the
static dielectric constant of germanium. The time-dependent local-density approximation (LDA) is
modified by the addition of a self-energy term taken to be a "scissors operator, "P,&her. This form leads
to a Ward-identity replacement p (e„z—HP ) '(e„z—Hs)p. For silicon, we obtain 11.3 for
e~(co 0), compared to 11.7 for experiment, 13.1 in our LDA calculation, and 8.4 in a naive self-
energy-corrected theory (i.e., simply modifying the eigenvalues without modifying the momentum opera-
tor). For germanium, the corresponding values are 16.5, 15.8, 21.3, and 10.4.

PACS numbers: 78.20.Ci, 71.20.Ad, 71.45.6m

The most serious error in local-density-approximation
(LDA) calculations of the band structure of semiconduc-
tors is the discrepancies between the Kohn-Sham eigen-
values' and the optical-absorption energies. The prob-
lem was resolved in the mid 1980's, first by the sugges-
tion that the exchange-correlation functional was discon-
tinuous for energies on two sides of the exchange-cor-
relation gap, and then by a new generation of GS'cal-
culations, which have allowed agreement with experi-
mental optical-absorption energies at the level of 0.1 eV.

Recently, high-quality LDA calculations of silicon
and related crystals have become available. They indi-

cate that the LDA overestimates the static dielectric
constant of silicon by about 10% and some 25% in ger-
manium. This overestimate is related to the underesti-
mate of the band gaps in the LDA, which is more severe
in germanium than silicon. However, as noted by Hy-
bertsen and Louie, simply replacing the LDA eigenval-
ues by their GS' or empirical counterparts leads to far
too small a dielectric constant. A calculation by the
empirical pseudopotential method —which has the ap-
propriate band gap built in—leads to the value of 9.0 for
the static dielectric constant, compared to 11.7 for exper-
iment. '

Since the GR' theory depends upon a knowledge of the
dielectric response, which in turn depends on the quasi-
particle energies, one would hope that an improved
knowledge of the quasiparticle energies could be used to
improve the GR' calculation itself. Up to the present,
the practice has been to use the LDA or RPA dielectric
response.

In this paper, we show how to properly include the
many-body effect of a quasiparticle energy shift in the
optical response and do so for silicon and germanium at
the level of a scissors operator "hgP, q, i.e., a k-depend-
ent energy shift in the conduction bands which does not
change their wave functions. (Here, P,), is the projection
operator onto all conduction bands at wave vector k.)
Since the quasiparticle wave functions calculated in the
GS' approximation ' are in excellent agreement

(wave-function overlaps exceeding 0.999) with the LDA
wave functions, this is a promising Ansatz. The magni-
tude of the shift can be found semiempirically, ' from a
quasiparticle local-density calculation' or other simple
models i5, i6 or from Gg calculations.

Self-consistent frequency-dependent response theory '

including local field corrections' and exchange-correla-
tion effects' is known as the time-dependent local-
density approximation (TDLDA). In this formulation, a
number density is induced according to

((~(r;co) -e' dr', Bn(r';co)
4 r —r' (3)

and p"'(r;co) is the induced exchange-correlation poten-
tial

aV„,(r)
(I) "'(r;co ) bn(r;co)

bn (r) n(r) no(r)

linearized about its ground-state value. Frequency-de-
pendent corrections to this formula have been con-
sidered, but are believed to be small. ' The choice of Eq.
(3) is characteristic of the Coulomb gauge.

The independent-particle susceptibility is given by

(5)

where the sum is taken over all single-particle states, the

f; are occupation factors, and rl is a positive infin-
itesimal. We take each f; to be 0 or 1. Fundamentally
the energies and wave functions in Eq. (5) refer to the
associated many-body states. ' In TDLDA, these quan-
tities are replaced by their LDA values; a modified

bn(r;co) dr'gp(r, r';co)P" (r';co), (1)

where the self-consistent 6eld p" (r', co) is related to the
external field (0)'"'(r;co) by

((" (rt; )co-y'"'(r;co)+ yc(r;co)+ y"'(r;co) .

Here, p (r;co) is the induced Coulomb potential
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choice is made in this work.
Consider the case of a crystalline solid. I et j. . . j denote the quantities which are periodic in the primitive direct lat-

tice vectors of the crystal; for example, the electron density is in the form Bn(r;co) = Qo e'~'f8n(r;ro)j with the period-
ic part of the electron density given by

OCC

4n(r~)j -AO„II dkg &fnkj ~r&&r
~
(|.„g+.ha) H—„~ ) 'fy'"(~)j

~
fpgkj&, (6)

n»

where H~ is the "k-dot-p" Hamiltonian, given in the
I.DA by

' this limit longitudinal response theory (presented here) is

equivalent to transverse, or optical, response. De6ne
HLDA ~ (p+k) 2+ V

H( q (p+k+VgVg+VgZg),
in (Hartree) atomic units. In general, Vq is nonlocal;
in the present work a nonlocal ionic pseudopotential is
used. 2 The unit-cell volume is r10, and &0 r1ol
(2~) 3. An expanded exposition will be given else-
where. In the presence of a self-energy term, the k-
dot-p Hamiltonian takes the form

i (p+k) +Vg+Zg,

where Xg is the self-energy operator with crystal momen-
tum k. We will be interested in small-q expansions; in

H, - -,
' q'+q V, [q V,(V&+Z&)l.

The modification of the momentum operator given by
Eq. (9) is a Ward identity.

The electron density and self-consistent fields of Eq.
(6) can be broken into long-wave (G-O) and short-
wave or local-field (GWO) parts. The long-wave charge
induced by a Iong-wave potent'» go~"i' is giv~~ from
Eq. (6) by

OCC

Ap
' ' dr Bn r;cu p A, m Qp dk nk Hi e„g+ Am —Hg 'Hi nk + nk H2 nk

related formulas describe the local-Geld corrections. By perturbation theory,

&fnkj ~H, (e„g—Hg) 'H(
~

jnkj&+&fnkj ~H2~ flikj&= —,
'

q Vg(q. &g~.m, ).
Because of the periodicity of the eigenvalue, the integral of this expression over the Brillouin zone vanishes; this proves
the f-sum rule for crystals in the present context. Combining the integral of Eq. (12) with Eq. (11) leads to

OCC

flo I dr+—~(r ~)j po(hei) &o„dk 2, l&~nkj I Hi(~ a+' Aoi Hz) Hi I Iiikj&

from which the static limit '

Ap dr Bn r 0 2 pQp, dk nk Hi e i,
—Hg Hi nk

P1

may be derived by a Taylor expansion in powers of co. Neither Eq. (13) nor the formulas for the local-field corrections
depend explicitly on H2.

We new invoke the scissors Ansasz Z~ h, gP, g. This implies

with H~ q (p+k+VqVt, ). The self-energy Zq has k dependence through the projection operator P,q even if hq is a
constant. In the static limit, the self-energy-corrected static dielectric constant (without local-6eld correction) is given
by

n r;0 -2 pep& d]l~ nk Hi" " ~„l,—Ha " '
~„i,—Hjh,

'
~„v —

Hjh,
" 'Hi"" .nk

contrast to a n aive attempt to incorporate self-energy effects by the substitution (e„q —Hi, )~ (e„q —Hq) while retaining II~" without modification in the I.DA version of Eq. (14), we have shown that the
net correction is to only one of the three energy denominators.

We have extended the plane-wave pseudopotential code of Allan and Yeter to include linear' response. We solve the
meBi6ed Sternheimer equation, ' using iterative techniques; the solution is equivalent to a sum over all "virtual inter-
mediate states. " We use a separable, norm-conserving pseudopctential. ' A 12-Ry energy cutoff was selected For
this work, which is somewhat lower than the 14 Ry used in similar studies. ' For germanium, we chose a 20-Ry cuto6;



VOLUME 63, NUMBER 16 PHYSICAL REVIEW LETTERS 16 OCTOBER 1989

TA&LE I. Calculated values of the static dielectric constant for silicon. Sixty special points
were chosen in all cases. The third line is from Eq. (14) with LDA operators; fourth line, from
Eq. (14) with Hi FI/r- and Hr, Hpo" +hi„ fifth line, from Eq. (16). i.oo represents the cal-
culation without local-field corrections (Ref. 17); r.~" excludes P"' of Eq. (4); r.'~ includes
LDA values, self-energy-corrected calculations, and experiment. The ideal value for the f sum
is unity. The f-sum integral is identical for the LDA and the present model.

Silicon
RPA

&M f sum
Germanium

&M f sum

BR LDA'
HL LDAb
Present LDA
"Naive, "hl, 0.7 eV
Present, hI, 0.7 eV
Expt. '

13.4
13.6
13.8
8.8

1 1.8

12.0
12.2
12.4

12.7
13.0
13.1
8.4

1 1.3
1 1.7

1.013
0.887
1.013

21.9
22.0
10.8
17.0

20.7
21.3
10.4
16.5
15.8

0.993
0.857
0.993

Baroni and Resta, Ref. 6.
Hybertsen and Louie, Ref. 7.

'Reference 10.

which is the same as in Ref. 7. We slightly exceed these
studies' published values in the calculation of woo, t..~
and e~ for both ten and sixty special points; our re-
sults are 0.3-0.4 units in e above the work of Baroni and
Resta and 0.1-0.6 units above the work of Hybertsen
and Louie. (The symbol e~ denotes the macroscopic
dielectric constant, which may be compared to experi-
ment. ) Integration of all terms other than —,

'
q appear-

ing in the f-sum rule Eq. (12) yields values of 1.031
(1.045) with ten special points and 1.013 (0.993) with
sixty special points for silicon (germanium), relative to a
unit normalization. It is numerically critical to use Eq.
(13) rather than Eq. (11), to avoid a huge error in e,
4rr("f sum" —1) (tsar/IH) ~ 16 for pro ~ 2.7 eV.

We chose hg 0.7 eV, independent of k, based on a
suggestion by Godby, Schliiter, and Sham; this intro-
duces errors at the level of 0.1 eV for silicon and 0.2 eV
for germanium. The static calculations are summarized
in Table I. As can be seen, the self-energy correction
improves agreement with the experimental values.

In Fig. 1, we present the dielectric response for silicon
in the frequency range 0-2.7 eV. Local-field effects im-
pose a significant, if featureless, correction; more sig-
nificant corrections are to be expected in the presence of
absorption resonances. The self-energy-corrected
theory results in a curve which starts 4% below the ex-
periment and rises somewhat too gently; by contrast the
TDLDA results start some 12% above the experimental
value and rise rather too steeply. The error reduction is
about a factor of 3. A reduction in the scissors constant
from the value chosen 0.7 to about 0.55 eV would con-
siderably improve agreement with experiment; increasing
the energy cutoff will affect the eigenvalue spectrum at
the 0.1-eV level. A host of other effects, such as error
in the Brillouin-zone integration, core polarizabilities,
phonon corrections, GF vs LDA wave-function differ-
ence, k dependence of the scissors operator, corrections
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F16. 1. The longitudinal dielectric response for silicon r. r (ro)

belo~ the direct gap. The dotted line is the TDLDA with the
local-field correction. The solid line is the present self-energy-
corrected theory for h, l, 0.7 eV with the local-field correction.
The chain-dotted line is from experiment (Ref. 10).

to the linearized exchange-correlation assumption of Eq.
(4), transverse versus longitudinal response, and devia-
tions of the pseudopotential phase shifts from the LDA
phase shifts, are each expected to enter at the level of
0.1%-2%. Also significant is our neglect of the renor-
malization constant and the diffuse part of the spectral
response; in our approximation, oscillator strength prop-
erly belonging to the background is placed in the quasi-
particle peaks.

We have shown how to include the effect of a self-
energy operator in self-consistent-field response theory.
We have given a new, explicit formula to compute the
effect of the self-energy on the response in the important
case that the self-energy operator has a scissors form.
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We have performed a well-converged self-energy- and
local-field-corrected response calculation for silicon, as
well as a comparison TDLDA calculation (itself the first
well-converged calculation for any crystalline solid).
The correction proposed here considerably improves the
agreement with experiment.

The static dielectric constant is usually regarded as a
ground-state property, and therefore amenable to ex-
planation by density-functional theory. The LDA is
thought to be a reasonably good implementation
thereof. By contrast, in our formulation, we invoke
excited-state properties, properties regarded as not being
a part of the density-functional theory, in an essential
way to understand the dielectric constant.

%"e acknowledge helpfu1 correspondence and discus-
sions with Mark Hybertsen, Richard M. Martin, and
John Rehr. Support for this work was provided by NSF
Grant No. DMR-8702002, the Cornell Electronic Struc-
ture Theory Group, and the Cornell National Supercom-
puter Facility. Hospitality provided by Cornell's Lab-
oratory of Atomic and Solid State Physics, principally to
Z.H.L., is gratefully acknowledged.

'W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
J. P. Perdew and M. Levy, Phys. Rev. Lett. 51, 1884

(1983); L. J. Sham and M. Schluter, Phys. Rev. Lett. 51, 1888
(1983);Phys. Rev. B 32, 3883 (1985).

G. Stinati, H. J. Mattausch, and W. Hanke, Phys. Rev.
Lett. 45, 290 (1980); Phys. Rev. B 25, 2867 (1982).

4M. S. Hybertsen and S. G. Louie, Phys. Rev. 8 34, 5390
(1986).

5R. W. Godby, M. Schluter, and L. J. Sham, Phys. Rev. 8
37, 10159 (1988), and references therein.

6S. Baroni and R. Resta, Phys. Rev. B 33, 7017 (1986).
7M. S. Hybertsen and S. G. Louie, Phys. Rev. 8 35, 5585

(1987).
The situation in germanium could be regarded as far worse.

While the germanium band structure of Ref. 7 has a tiny gap
of +0.03 eV at I [M. Hybertsen (private communication)], F.
Gygi and A. Baldereschi, Phys. Rev. Lett. 62, 2160 (1989), re-
port a "gap" of —0.09 eV, i.e., metallization. In the present
calculation, we obtain —0.01 eV for the gap at I. G. B.
Bachelet and N. E. Christensen, Phys. Rev. B 31, 879 (1985),
report +0.09 eV. These differences are not significant; more-
over, the near-zero value itself is accidental. Strictly speaking
we should report an infinite value for the dielectric constant in
our calculation. We obtain agreement with Ref. 7 only be-
cause of the discretization imposed by our ten- or sixty-
special-point quadrature of the irreducible Brillouin zone.

S. G. Louie, J. R. Chelikowsky, and M. L. Cohen, Phys.
Rev. Lett. 34, 155 (1975).

'oR. F. Potter, in Handbook of Optical Constants of Solids
edited by E. D. Pallik (Academic, New York, 1985), p. 465; D.
F. Edwards, ibid. , p. 547.

Gygi and Baldereschi, Ref. 8.
'zL. Hedin, Phys. Rev. 139, A796 (1965); L. Hedin and S.

Lundqvist, Solid State Phys. 23, 1 (1969).
' G. A. Baraff and M. Schluter, Phys. Rev. 8 30, 3460

(1984).
4C. S. Wang and W. E. Pickett, Phys. Rev. Lett. 51, 597

(1983); W. E. Pickett and C. S. Wang, Phys. Rev. B 30, 4719
(1984); Int. J. Quantum Chem. Quantum Chem. Symp. 20,
299 (1986).

'sA. E. Carlsson, Phys. Rev. B 31, 5178 (1985).
' M. Lannoo, M. Schluter, and L. J. Sham, Phys. Rev. 8 32,

3S90 (19SS).
' H. Ehrenreich and M. H. Cohen, Phys. Rev. 115, 786

(1959).
'SS. L. Adler, Phys. Rev. 126, 413 (1962); N. Wiser, Phys.

Rev. 129, 62 (1963).
'9A. Zangwill and P. Soven, Phys. Rev. A 21, 1561 (1980).
zoW. Hanke and L. J. Sham, Phys. Rev. B 21, 4656 (1980).

E. Runge and E. K. U. Gross, Phys. Rev. Lett. 52, 997
(1984); E. K. U. Gross and W. Kohn, Phys. Rev. Lett. 55,
2850 (1985); N. Iwamoto and E. K. U. Gross, Phys. Rev. B 35,
3003 (1987).

22J. D. Jackson, Classical Electrodynamics (Wiley, New
York, 1975), 2nd ed. , p. 221.

23J. Bardeen, J. Chem. Phys. 6, 367 (1938);F. Wooten, Opti
col Properties of Solids (Academic, New York, 1972), App.
H.

24L. Kleinman and D. M. Bylander, Phys. Rev. Lett. 48, 1425
(1982).

D. C. Allan and M. P. Teter, Phys. Rev. Lett. 59, 1136
(1987).

26D. R. Hamann, Phys. Rev. B 40, 2980 (1989).
27Z. H. Levine and D. C. Allan (to be published).
2sV. Ambegoakar and W. Kohn, Phys. Rev. 117, 423 (1960).
29G. D. Mahan, Many Particle -Physics (Plenum, New York,

1981),p. 618.
3oF. Wooten, Optical Properties of Solids (Academic, New

York, 1972), App. D; also Eq. (I.A17).
3'G. D. Mahan, Phys. Rev. A 22, 1780 (1980).

S. Baroni and P. Giannozzi, Phys. Rev. Lett. 58, 1861
(1987).

For silicon, we found the results to be relatively insensitive
to the choice of the pseudopotential; results reported in this pa-
per are obtained from applying the Kleinman-Bylander pro-
cedure (Ref. 24) to the pseudopotential employed by M.-T.
Yin and M. L. Cohen, Phys. Rev. B 26, 5668 (1982), with the
d pseudopotential taken as local, and s and p as nonlocal. For
germanium, to reproduce the band structure of M. S. Hybert-
sen (private communication) used in Ref. 7 to 0. 1 eV in the
Kleinman-Bylander scheme, we found it necessary to use the
pseudopotential of Ref. 26 and to choose the s part as local,
with nonlocal contributions from p and d. The eigenvalue of
the I 2 conduction-band state is sensitive to the choice of the
pseudopotential; because of inverse cube power in the
Brillouin-zone average of Eq. (14), the dielectric constant is
strongly influenced by states near I, as discussed in Ref. 8.

34D. J. Chadi and M. L. Cohen, Phys. Rev. B 8, 5747 (1973);
H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).

35Z. H. Levine and P. Soven, Phys. Rev. Lett. 50, 2074
(1983); Phys. Rev. A 29, 625 (1984); 35, 3964(E) (1987); 36,
1181 (1987).

1722


