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We analyze the nucleation and growth of cohesive tensile cracks using a field-theoretic formulation in
which the free energy is written as a functional of the crack separation (offset field). Our results indi-
cate that, for certain materials, crack nucleation and growth proceed through the formation and exten-
sion of a diffuse “halo” surrounding the classical portion of the crack. This is similar to nonclassical nu-
cleation in magnetic systems. Theoretical considerations and numerical calculations strongly suggest
that the diffuse halo can be identified with the fracture “process zone” seen in laboratory studies of ad-

vancing cracks.

PACS numbers: 64.60.Qb, 62.20.Mk

The theory of fracture began with the work of
Griffith! who approached nucleation and growth of ten-
sile cracks in a manner similar to the way that Gibbs
treated the growth of bubbles in first-order phase transi-
tions.2 Under the application of a uniform tensile stress
of magnitude p a crack of semilength / induces a free-
energy change AF = —B?p2/2+2yl, where 2y is the en-
ergy needed to separate a unit of material at the crack
tip and B depends on the elastic constants and the
geometry of the solid body."** Crack growth occurs in
the classical model when the force generated by the ap-
plied stress overcomes the resistance at the crack bound-
ary, i.e., when d AF/dl =0.

The classical theory is reasonably successful in ex-
plaining fracture in brittle materials such as glass; how-
ever, crack growth in many other materials such as met-
als is not explained by the Griffith theory. In such ma-
terials nonclassical behavior arises from cohesion in the
solid and is often manifested by the appearance of a
fracture “process zone.”>>® The process zone is a region
of partial separation in advance of the classical crack tip
and can be of considerable length compared to the classi-
cal portion of the crack.®

In this Letter we present a theory of fracture based on
the analogy with nucleation.” This formulation provides
a general framework that encompasses nonclassical as
well as classical fracture mechanisms. Our primary re-
sult is that for certain classes of materials the crack con-
sists of a classical part surrounded by a diffuse “halo”
similar to nucleation in deeply quenched thermal sys-
tems. %0

Our starting point is the observation that Griffith
theory, usually thought of as describing the result of ap-
plying a variable stress p to a pre-existing crack of fixed
semilength /, could equally well be a description of the
growth of cracks of varying / in an applied stress field of
fixed strength p. In this view, the Griffith theory is
essentially a nucleation® theory which can be obtained
from a “free-energy” functional.'® The functional we

propose’ is of the form

F() ==fdx [—p((x)+ ;—fdx'T(x—x')g(x)é'(x')
+27 (1 —expl =2/ (1)

In constructing F(¢) we have assumed the following:
(1) F is for a single lattice plane in the solid with lattice
constant a. (2) The lattice plane is oriented along the
x-z plane, while the tensile opening field {(x) (crack sep-
aration) and the applied stress p are normal to the lattice
plane, i.e., along the y axis. Equation (1) will only de-
scribe the early, quasistatic, crack growth 10 since inertia,
and hence phonon radiation, is neglected. As in nu-
cleation in thermal systems we are assuming that the
“nucleated” crack is growing so slowly that the sur-
rounding material can be considered to be in thermal
equilibrium. This is material dependent; however, one
can say, in general, that the initial growth rate is propor-
tional® to the inverse of the square of the radius of the
nucleating droplet. For the systems we are considering
this radius will be large.

The “‘interaction potential” T'(x —x') is a Euclidean
tensor’ of rank four. It describes the effect a separation
at x has on a separation at x'. In general, T(x —x') is a
complicated function of the material structure affected
by, e.g., domain walls and defects. It does not, however,
contain the effect of the local cohesive forces which are
described by the exponential term in Eq. (1). The in-
tegral of 7(x —x') in a perfect infinite crystal is zero.

Attempts have been made'"'? to calculate 7(x —x')
from microscopic considerations; however, we take a dif-
ferent approach.” Since we are not interested here in
calculating specific numerical quantities, but in providing
a conceptual framework that encompasses nonclassical
fracture mechanisms, the precise form of 7(x —x') is not
important. Clearly, we require a specific form of
T(x —x') for our numerical calculations but for the dis-
cussion of the nucleation mechanism we will merely re-
quire that T(x—x’') is a function of x —x'. Therefore,
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the integral with respect to x or x' is a constant, but oth-
erwise arbitrary. Since we are considering metals and
hence, systems with long-range order, we also expect
that the second moment of 7'(x —x') is large. This im-
plies that saddle-point techniques®'®' can be used to
evaluate the nucleation process and that mean-field
effects will be prominent.®'* It is also important to note
that we assume T(x—x') to be independent of time
throughout the fracture process which also limits this ap-
proach to early time.

The term 2y'{l —expl—¢2%(x)/a’l} is the effective
binding (free) energy due to the cohesive force of the in-
termolecular bonds. The quantity y' is the binding-
energy density. The derivative of the binding energy, the
cohesive force, has a maximum at ¢((x)=a/v/2. If
T(x—x') were zero then separations greater than a/~/2
would result in catastrophic crack growth. For nonzero
T(x—x') there is an additional contribution to the
effective force which shifts the maximum beyond which
catastrophic growth occurs. This maximum or limit of
stability appears to play a role similar to that of the spi-
nodal in thermal phase transitions. We will return to
this point below.

To summarize, we consider materials with a definite
but unknown past history which determines 7(x —x').
The material is subjected to a constant external stress p
which is assumed to have no effect on T(x —x'). Cracks
appear in the material with a probability given by
expl — BF{¢(x)}], where F{{(x)} is given in Eq. (1). Be-
cause of the low probability of large cracks as well as the
long-range nature of T(x—x'), the appearance of sub-
critical cracks should also have no effect on T(x —x').
We then equate the “critical crack” with the critical or
nucleating droplet. Therefore, we search for saddle
points '® of the free-energy functional in Eq. (1).

The Euler-Lagrange equation is obtained by function-
al differentiation of Eq. (1):

—p+de' T(x—x")¢x")
2
—‘7—2(") ]=o. )

a

+ i%C(x)exp
a

The critical droplet, or crack, for a fixed p is a spatially
localized solution of Eq. (2). However, substantial infor-
mation can be obtained from the spatially uniform solu-
tions which we will consider first. For constant {(x) =¢,
Eq. (2) becomes

p—T¢=3L rexp
a

— 2

—5—] : 3)
a

where T=[dx'T(x—x'). The right-hand side of Eq.
(3) is plotted as the solid line in Fig. 1. The dashed line
in Fig. 1 is the left-hand side of Eq. (3) with an arbitrary
p and positive, but otherwise arbitrary, 7. For this
choice of p and T there are three solutions to Eq. (3).
Points labeled 4 and C are minima of the free energy in
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Eq. (1) and the point labeled B is a maximum. Al-
though point C, which is an absolute minimum, repre-
sents a stable solution to Eq. (2), it is physically unin-
teresting since the separation ¢ is much larger than the
lattice constant a. This state is unstable to external
forces such as shear which are not included in our treat-
ment. The maximum at point B is unstable. As p is in-
creased a critical value p,(T) is reached where points A4
and B coalesce. This is the so-called spinodal line which
has all the properties of a line of critical points.'>
Specifically, the quantity analogous to the surface ten-
sion in thermal problems vanishes at p;(7). In analogy
to nucleation, the vanishing of the “surface tension” im-
plies that the classical droplet is no longer the dominant
form of fracture.®® For T negative (dotted line in Fig.
1) the same considerations apply. These spinodals can
only be reached by the application of fairly large stress if
T is small or, for small applied stress, in systems with
considerable defects.

There is another type of spinodal that may be impor-
tant for fracture. There exists an instability in materials
described by Eq. (1) to fluctuations with a nonzero wave
vector. Returning to Eq. (2) we assume that ¢, is a con-
stant solution. Writing {=¢y+¢(x), where ¢(x) is as-
sumed to be small, we linearize in ¢(x), Fourier trans-
form, and obtain

— 2 2
—%”1—% dk), @)

- T(k)$ k) =4—7;exp
a

where 7(k) and ¢(k) are the Fourier transforms of
T(x—x') and ¢(x).

Nontrivial solutions to Eq. (4) imply that there can
exist unstable modes in the system'* when 7°(0) is small
or even zero. This spinodal is similar to the one found in
crystallization of fluids.'*'®

Returning to Eq. (2) we consider localized or droplet
solutions to the Euler-Lagrange equation. We estimate
the solution to Eq. (2) near the spinodal generated by a
positive value for 7, i.e., the instability to |k| =0 fluc-

¢(x)

FIG. 1. The solid line is a schematic plot of the right-hand
side of Eq. (3) as a function of {. The dashed and dotted lines
are plots of the left-hand side of Eq. (3) for T positive and neg-
ative, respectively, and for different values of p.
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tuations. This will be done analytically for a broad class
of T(x —x'), and numerically for a particular choice.

Since we are considering the system near the spinodal
we expect the critical fracture solution to Eq. (2) to be
similar to a spinodal fluctuation in that it will be a large
spatial extent low-amplitude droplet as seen in nu-
cleation.®® In addition, its Fourier transform should be
strongly peaked about |k| =0. This will be seen to be
self-consistent.

Defining Ap=p; —p and writing {(x) =&+ w(x), we
expand the exponential in Eq. (2) keeping terms up to
quadratic in y(x). We also expand 7(k) in powers of
|k| and keep terms to second order. Combining these
manipulations results in the equation for the crack
profile y(x):

—RV?y(x)+Ap —ay?(x) =0, ©))

where — R? is the second moment of 7'(x —x') which is
assumed to be large and the coefficient of the w? term
(a > 0) will not vanish at the spinodal Ap =0.

Equation (5) is identical to the Euler-Lagrange equa-
tion obtained for nucleation near the spinodal in mag-
netic systems and binary fluids and alloys.®'3 The solu-
tion to Eq. (5) is known?® to be given in the form w(x)
~(Ap)*5(|x|/€), where the correlation length
&E~(Ap) ~4 This is precisely the low-amplitude large-
spatial-extent solution we expected.

Additional information about the structure of the crit-
ical cracks in this regime can be obtained from the anal-
ogy with nucleation. First, we should expect that the
crack near the spinodal is a fractal and should be
describable as a percolation cluster.®!” Second, the crit-
ical crack will become more classical or Griffith-like
when the applied stress p is significantly less than p;.
From nucleation studies we know that the structure
should be that of a Griffith-like classical crack surround-
ed by a fractal halo.® Third, we know that nonclassical
nucleation and, by analogy, nonclassical fracture de-
pends on the proximity of the spinodal. This in turn re-
quires that there be some property of the system that
stabilizes it against fracture for deep quenches, i.e., large
p. From the nucleation studies® we know that stability
requires that the parameter R in Eq. (5) be large. Con-
sequently it is the second moment of the stress tensor
T(x—x') that determines the degree to which nonclassi-
cal fracture is important. This is, of course, material and
history dependent.

In order to investigate the dynamic evolution of the
fracture we adopt the form of 7(x —x') given in Eq. (6):

1
(x—x")2—1

T(x—x')=— [ 24 R 6)

ar(1—v)

where we have assumed symmetry in the z-coordinate
direction and stress in the y direction. In Eq. (6), u is
the macroscopic shear modulus and v is the macroscopic
Poisson’s ratio.'® The form chosen for T(x —x') is dic-
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FIG. 2. Plot of the offset field w(x) as a function of x for an
applied uniform stress in the y direction. Symmetry is assumed
in the z direction (out of the page). (a) After 5 iterations and
before the noise is switched on; (b) after 11 iterations and the
mean offset field is zero; (c) after 21 iterations (note change in
vertical scale); and (d) after 50 iterations. These were gen-
erated with Langevin dynamics using the stress tensor in Eq.
(6) with u=3x10"" dyn/cm? v=0.25, y'=3x%10"%u, p
=0.2863u, and a =2 A.
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tated by the assumption that on the coarse-grained
length scales inherent in free energies of the form as-
sumed in Eq. (1), the stress tensor can be taken as the
elastic stress Green’s function.” This is the stress tensor
appropriate to a defect-free elastic solid and that [dx
x T(x —x') =0 when the solid is infinite.

Using Langevin dynamics with a Gaussian random
noise we solve for the offset field { numerically in the re-
gion near the spinodal value of p. Specifically we coarse
grain our system and iterate the equation of motion. It
should be noted that the computational requirement of a
finite system results in a finite positive value for 7 and a
breaking of translation symmetry in the x direction.

The results of the computation are summarized in Fig.
2. In Fig. 2(a), the tensile offset is shown for the chosen
value of p after five iterations and with no random noise.
This is the value of the offset in the “metastable state.”
At five iterations the noise is turned on and for ten itera-
tions the system fluctuates about the metastable state
with no change in the average offset from that seen in
Fig. 1(a). Figure 2(b) shows a representative lattice
profile. At ~15 iterations the mean offset begins to
grow, bubbles form and begin to more toward regions of
a larger tensile force [dx¢(x)T(x—x'). Figure 2(c)
shows a relatively late stage of this process. Finally, in
Fig. 2(d) we show the crack evolved into a classical ob-
ject.

Several interesting predictions as well as indications of
directions of further research result from this work.
First, there is considerable experimental evidence> %20 in
support of nonclassical crack extension by processes
similar to those indicated in Fig. 2. The extension of
cracks through the growth and absorption of voids in the
nonclassical ramified region or process zone is generally
termed “microvoid coalescence” or ‘“dimple rupture”
when it occurs in metals.'®? Usually this is attributed
to pre-existing defects or inclusions but homogeneous
fracture with microvoid coalescence also occurs.?’ In
our model this process occurs as a consequence of the
nucleation process contained in the free-energy function-
al of Eq. (1).

Second, our theory is general enough to contain both
classical and nonclassical fracture. Moreover, a specific
physical characteristic of the material, the second mo-
ment of T(x—x'), and the “spinodal” that goes along
with large values of this moment, are seen to be neces-
sary for nonclassical fracture.

Third, since nonclassical fracture is predicted to be the
same as nonclassical nucleation we expect that the non-
classical fracture process starts before any increase is
detected in the mean value of the offset field. This is the
analog of the fractal droplet in magnetic systems which
initiates the metastable state decay with no detectable
magnetization change. In analogy with the nucleation
problem, this implies that the nonclassical initial crack
can be characterized as a particular type of percolation
cluster. This has the additional benefit of severely limit-
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ing the kinds of percolation models that will give an ac-
curate picture of fracture.?'

Finally, the nucleation analog suggests several addi-
tional fracture mechanisms such as the instability to
| k| =0 fluctuations discussed above. We can also sug-
gest two experiments to further test our theory. If the
process zone is a “spinodal effect” we would predict from
our theory that the size of the process zone should in-
crease with p for fixed large R as [p,(T) —p] ~'/* and
should also increase linearly with R for large fixed p.
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