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Wetting immiscible displacement of one fluid by another in a porous medium yields self-affine (aniso-
tropic) fractal interfaces between the two fluids. Water-air interfaces are characterized experimentally
by a scale-dependent roughness w(L) =AL?, with p=0.73 £ 0.03, independent of the capillary number
Ca, and AaCa~%47%006  The exponent B is related to the “box” and “divider” dimensions by

Dy =2 — B and Dy =1/pB, respectively.

PACS numbers: 47.55.Mh, 68.45.Gd

The displacement of one fluid by another in a porous
medium displays a rich variety of behavior,! depending
on the properties of the two fluids, including their
viscosities and effectiveness in wetting the medium.?2
This problem has been of fundamental interest in part
because fractal interfaces form under certain conditions.
For example, when the displacing fluid is less viscous and
less effective in wetting the medium, the invaded region
is filamentary and has scaling properties described by
diffusion-limited aggregation (DLA) with a fractal di-
mension D=1.71 (for two-dimensional geometries).>
Slow displacement by a nonwetting fluid, on the other
hand, is understood in terms of “invasion percolation”
models>* with D =1.82. Some other situations do not
lead to fractal interfaces at all.>

The fractal interfaces previously studied are statisti-
cally self-similar®’ when magnified equally in all direc-
tions. In this paper, we describe a geometrical study of
the interfaces formed when the displacing fluid is more
viscous and more effectively wets the medium. The in-
vaded region is then continuous, but random local pin-
ning by capillary forces leads to a rough interface that is
well described as a self-affine® (that is, anisotropic) frac-
tal. In that case, various methods of computing D give
different results, and the most useful exponent is one that
describes the scaling of the width of the interface with
measurement scale.

If the displacing fluid preferentially wets the medium,
as in our experiments, the fluid moves through the small-
er pores at lower pressures than those required to move
through the larger ones. This leads to certain preferred
locations for the interface, so there can be many stable
states. Microscopic examples of such random pinning
phenomena are fairly common in condensed matter sys-
tems; for example, in charge-density wave motion in con-
ductors.® The nonlinear response of such a fluid system
to an applied force was carefully studied by Stokes,
Kushnick, and Robbins, !° though the geometry of the in-
terface could not be investigated in that work.

Two theoretical approaches to the problem of wetting

immiscible displacement ! are available in the literature:
a stochastic partial differential equation for the motion
of an interface in a random medium, '? and a microscopic
model that considers various mechanisms for advancing
individual segments of the interface.!* In both ap-
proaches the interface may be either in constant motion
or “pinned,” depending on the noise amplitude in Ref.
12, or the contact angle in Ref. 13. However, no results
from either model concerning the fractal properties of
the moving interfaces have been published, although
Cieplak and Robbins'® suggested that the interface
might be a self-affine (anisotropic) fractal.

Our experiments were performed in a thin horizontal
cell of dimensions 55 cm in the direction of motion (y),
17 cm in the transverse (x) direction, and 0.15 cm deep.
The top and bottom plates were glass, separated by a
Teflon gasket. The porous medium consisted of tightly
packed glass beads that were ultrasonically cleaned,
thoroughly rinsed with distilled water, and dried in an
oven. We applied a similar procedure to the glass plates.
We used three different bead sizes b, with average diam-
eters of 100, 200, and 350 um, and a diameter variation
é of about =+ 20%.

Water containing a small amount of dye to improve
contrast was injected into the cavity at one end of the
cell. A constant flow velocity was obtained by means of
a syringe driven by a high-precision stepper motor. This
system allowed us to control the pumping velocity with
nominal resolution better than 1% for the slowest veloci-
ties used. After the interface spreads from the injection
point across the whole width of the cell, a constant aver-
age velocity of the interface can be defined. Our analysis
only includes the patterns obtained after this spreading
occurred.

The motion of the interface was recorded with a
charge-coupled-device videocamera, and digitized with a
spatial resolution of 512x480 pixels and 8-bit intensity
resolution. The imaging system was arranged to capture
only the central 10 cm of the interface in the x direction,
to avoid edge effects. Thus the pixel size is 180 um.
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FIG. 1. Plot of fourteen successive interfaces at Ca=4.93
%10 3. The time interval between single interfaces is 30 s.

The relevant control parameter is the modified capil-
lary number, defined as Ca=Uub*/ky, where U is the
average velocity of the interface, u is the dynamic viscos-
ity of water, v is the air-water interfacial tension, b is the
bead size, and k is the permeability. The capillary num-
ber measures the ratio of the viscous pressure (Uub/k)
to the capillary pressure (y/b) on the scale of the pore
size. The ratio b%/k is approximately 5.1 %103 for this
system. We varied Ca between roughly 10 73 and 10 };
therefore the viscous pressure drop in the water is always
smaller than the capillary pressure drop across the inter-
face.

For the cavity and the bead sizes used, we have an
average of four to fifteen interconnected bead layers in
the vertical direction, and therefore three-dimensional
effects could be significant. The interface is in fact
slightly fuzzy due to differential interface advancement
at different heights, but in practice this fuzziness is less
than about 0.5 mm, or about + of the depth. Therefore
representing these interfaces as lines A(x) is a good ap-
proximation down to this scale. We processed the im-
ages as described in Ref. 14 to determine the interfacial
shape A (x).

A typical sequence of interfaces at Ca=4.93x10 "3 is
shown in Fig. 1, with a time interval of 30 s between im-
ages. The roughness of the interface on a range of scales
is evident. The apparent roughness of the interface in-
creases with decreasing Ca. We also note that the inter-
faces usually do not present overhangs; i.e., the functions
h(x) are single valued, reflecting the low probability of
air trapping. The interface advances by coherent jumps
involving several pores.

How should such rough interfaces be characterized?
In studies of interfacial phase transitions'> and surface
growth models,'® interfacial irregularity is often charac-
terized by the roughness or width w(Z), which is defined
as the rms value of the fluctuations of 4 (x) over a length
scale L. More explicitly, w(L) =(([h(x) —(h) 1272,
where (h), is the average height over a segment of hor-
izontal length L, and the double brackets stand for
averaging over all the segments of length L that may be
defined in the x direction. Application of this concept to
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FIG. 2. Plot of roughness vs length scale at two different
values of Ca for bead size b =200 yum. Ca=2.47x10"3 (Aa)
and 9.78x10 ~3 (0).

the interfaces of the present experiments is straightfor-
ward. Figure 2 shows a log-log plot of w(L) for two
different values of Ca, where all lengths are expressed in
units of the bead size » =200 um. Each plot represents
the average of w(L) from thirty different images ob-
tained in the same run. We find power-law behavior,
w(L) = AL®, extending over slightly more than one de-
cade. At small length scales, the measurements are lim-
ited by the slight three dimensionality of the interfaces,
and ultimately by the bead size. At the largest length
scales, and for sufficiently high Ca, w(L) begins to satu-
rate.

Similar scaling behavior with the same exponent is
found over the entire range of Ca and bead sizes studied.
In Fig. 3 we show B as a function of log;o(Ca) for three
different bead sizes. Within the experimental uncertain-
ty, B is independent of both Ca and b, yielding an aver-
age value f=0.73 & 0.03, where the quoted uncertainty
is the standard deviation. Figure 4 shows the depen-
dence of 4 on Ca on a log-log scale. Although there is
significant scatter, the points coilapse fairly well onto a
single line 4 & (Ca)? linear regression yields a = —0.47
+0.06.
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FIG. 3. Roughness exponent vs Ca for b =100 (@), 200 (0),
and 350 um (A). The uncertainties are comparable to the size
of the symbols. The line corresponds to the average value of
B=0.73 £ 0.03.
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FIG. 4. Roughness amplitude vs Ca for =100 (O), 200
(0), and 350 um (A). The line is a least-squares fit by
A =A,Ca® which yields a = —0.47 % 0.06.

The fact that g differs from unity implies that fluctua-
tions in the interface shape scale differently in the x and
y directions and that the interfaces are therefore self-
affine fractals.®’ Mandelbrot has thoroughly discussed
the problem of the dimensionality of self-affine struc-
ture® and has shown that several different dimensions
may be computed, although they must be interpreted
carefully. The “box” dimension, Dj, is computed by
counting the number V(L) of boxes of size L needed to
cover the curve, with N(L) <L ~2. The “divider” di-
mension, Dy, is obtained by walking a divider of length L
along the curve and measuring the length of the curve
A(L) in units of L; then A(L) «« L ~?*. These quantities
are related to B as follows: D, =2—p8, and D,;=1/B.
The two dimensions are different when g=1.

We have carried out direct measurements of D, and
D,. In computing the latter, it is necessary®!” to magni-
fy the scale in the y direction until the exponent Dy
reaches a constant value. We find experimentally that
Dp=1.18 £0.08 and D,;=1.36 +0.08, whereas the pre-
dicted values based on the measured B are D, =1.27
+0.03 and D;=1.37 = 0.05, respectively, where the re-
ported uncertainties are again the standard deviations.
The results obtained are consistent with the predicted ex-
pressions.'® This strengthens the conclusion that these
interfaces are well described as self-affine fractals, with
scaling properties that are independent of capillary num-
ber and bead size, though the amplitude A, in units of
the bead size, varies approximately as Ca ~12_ Further-
more, the roughness exponent may be measured more
precisely than the other quantities and has a more intui-
tive physical interpretation.

The constancy of the roughness exponent 8 seems re-
markable, and suggests that efforts to explain the obser-
vation 8=0.73 £0.03 may be worthwhile. Preliminary
numerical results'® for the interfaces in the discrete
model of Ref. 13 yield scaling behavior with 0.70 <
< 0.74, consistent with our observations. Another type
of growth model, a stochastic and nonlinear generaliza-
tion of the diffusion equation for the propagation of an

interface, has been studied by renormalization-group
methods.?’ Though its applicability to the present exper-
iments is not completely clear, it does produce self-affine
interfaces with roughness exponents between 0.5 and 1,
depending on the properties of the noise.

The fact that 4 decreases with Ca implies that the
effects of the pore scale randomness become less
significant at higher flow velocities. However, the physi-
cal mechanism leading to the particular dependence on
Ca ~'/2 remains an open question. Some insight into the
existence of an upper bound on w(L) can be obtained by
balancing the viscous pressure drop (uUw/k) over a re-
gion of length w against the maximum capillary pressure
difference that might arise due to dispersion in the bead
size (6y/b?, where & is the estimated bead-size disper-
sion). The maximum possible value for w(L) is then ex-
pected to be Wiax=8/Ca. For Ca=3.82x10 "2, =200
um, and §~80 um, we have wya/b~10. This limit is
consistent with the saturation in w(L) observed at the
highest Ca, but is generally larger than w(L), and has a
different dependence on Ca than the observed amplitude
A.
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