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Crossover to Strong Intensity Correlation for Microwave Radiation in Random Media
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We report measurements of microwave intensity statistics in random configurations of polystyrene
spheres contained in a cylinder with reflecting walls. As the sample thickness increases measurements of
the intensity distribution and the intensity correlation function with frequency shift reveal a crossover

from uncorrelated to correlated photon diffusion.

PACS numbers: 42.20.—y, 78.20.Dj, 78.70.Gq, 84.40.Cb

Microwave experiments offer wide latitude with which
to probe the universal character of wave propagation.
Here we report measurements of first- and second-order
intensity statistics of microwave radiation in random
configurations of polystyrene spheres contained in a cy-
lindrical tube with highly reflecting copper walls. By
confining the radiation, the probability that a photon
passing through a point within the medium also passes
through another point or returns to the first point is
enhanced. This leads to an enhancement of intensity
correlation which increases further as the sample length,
L, increases. The degree of correlation is exhibited in
the distribution of intensities and in the intensity-
intensity correlation function with incident radiation fre-
quency at a point in the sample.

In the weak scattering limit k/>>1, where k =2a/\
and / is the transport mean free path, the intensity-
intensity correlation function has been calculated by
Stephen and Cwilich! and by Feng, Kane, Lee, and
Stone.? It can be expressed as an expansion in the pa-
rameter 1/g, where g=G/(e?/h) is the dimensionless
conductance. In the absence of inelastic processes g
== N,I/L, where N, is the number of transverse input
modes at the excitation frequency. The leading term in
the expansion corresponds to uncorrelated diffusion and
is directly related to the time-of-flight distribution of
photons.> When g is large this term dominates the local
intensity correlation function. Higher-order terms in-
clude corrections due to correlation between different
random paths in the medium. Though these corrections
dominate fluctuations in total transmission and conduc-
tance, they have not previously been directly observed in
local statistics. Measurements of optical fluctuations
have been in the regime of large g (> 104).3~% In elec-
tronic experiments® the requirement of subwavelength
resolution has not been achieved. These restrictions are
overcome in the present microwave experiments because
intensity measurements at a point are possible and g can
be made small by the use of reflecting walls to limit the
sample’s transverse dimensions.

In the weak scattering limit, g can be identified with
the Thouless number § (Ref. 7) which is the ratio of the
level width to the level spacing, §=8E/(dE/dN), for
eigenstates of the Schrodinger equation of a random po-

tential.® For classical waves & can be defined using the
correspondence principle as the dimensionless frequency
8=6v/(dv/dN). The level width v can be identified
with the half-width, évg, of the field-field correlation
function.?> Thus & can be determined experimentally
from measurements of intensity fluctuations with fre-
quency and is a natural parameter with which to de-
scribe electromagnetic propagation.

We measure the scale dependence of the average in-
tensity, T(L), the spectral cumulant intensity correlation
function, C/(Av;L), and the distribution of intensities,
P(I/<I);L), of the transmitted radiation. The sample
consists of uniform, one-half inch polystyrene spheres
with filling fraction f=0.56. The diameter of the copper
tube is 7.3 cm and the typical wavelength is ~1 cm.
The spheres uniformly fill the tube but are still loosely
enough packed to move significantly when the tube is
tumbled. The wave is launched from a horn positioned
20 cm in front of the sample. The frequency is set by a
computer-generated voltage and the sample is tumbled
by a computer-controlled motor. The intensity of mi-
crowave radiation is detected at the point of contact of a
wire probe with a Schottky diode. The diode is mounted
on a plunger which defines the sample length. The front
of the plunger is covered with a microwave-absorbing
material to minimize reflection back into the sample.
The time average of intensity at a point as a function of
L, which is measured as the sample is tumbled, is propor-
tional to the configuration average of transmission versus
thickness. The tumbling can be stopped and the fre-
quency dependence of the transmitted intensity for a
particular configuration of the sample can be studied by
scanning the microwave frequency. The spectra at a
given thickness are normalized to the average of all the
spectra at that thickness to eliminate the influence of the
frequency variations in the instrumental response. A
typical spectrum of intensity fluctuations at L =30 cm is
shown in Fig. 1(a). The intensity correlation function is
computed for each sample configuration and the ensem-
ble average is obtained by averaging the correlation
function for several hundred configurations, all with the
same number of scatterers. The points in Fig. 1(b) are
the results obtained for L ==30 cm. The distribution of
intensities is obtained from values of intensity in the
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FIG. 1. (a) Intensity fluctuations of microwave radiation
transmitted through a sample of thickness L==30 cm. (b)
Average of the cumulant autocorrelation function for 500 dif-
ferent sample configurations. The solid line is a least-squares
fit of Eq. (2) to the data points. (c) Distribution of intensities.

spectrum for all frequencies and sample configurations
probed at each sample thickness. Thus we are able to
measure propagation in samples of different config-
uration and length but with statistically equivalent disor-
der. This is the paradigm of ensemble averaging which
is not readily achieved in electronic studies except for the
case of substitutional disorder.

We have measured the thickness dependence of the
transmitted intensity 7°(L) at several frequencies be-
tween 18 and 24 GHz. We find that the measure-
ments of T(L) are described by the expression for trans-
mission given by the photon-diffusion model:*> T7T(L)
~sinh(aa)/sinh(aL). Here a=1/L, =1/(D1,)"? is the
extinction coefficient, D is the diffusion coefficient, 7, is
the photon absorption time, and a =5//3. A fit of the ex-
pression for T(L) to the data gives L, =25 %1 cm.

The field-field correlation function with frequency
shift, GE(Av) ~(E(v)E*(v+Av)), is the Fourier trans-
form of the photon time-of-flight distribution, 7(¢;L).3
Using the result of the photon-diffusion model for 7(¢;L)
gives

GE(Av;L) ~Relsinh(goa)/sinh(goL)], 1)

where qo is the root of g?=a?+2ziAv/D with negative
imaginary part.> In the absence of long-range spatial
correlation, the intensity correlation function,

GlAv;L) =(E(W)E*(V)E(v+AV)E* (v+AvV)),
can be evaluated by factorizing the fields,
Gl(Aav;L) = [{(EW)E*(v+Av)) P+(E(W)E*(v))

(Refs. 1 and 9). The cumulant intensity correlation
function is then given by3

C!(Av;L) ~ | sinh(goa)/sinh(goL) |?. )

The half-width of the intensity correlation function
Av; as determined by Eq. (2) depends on D, L,, and L.
A fit of the values of Av; predicted by Eq. (2) to the
measured values using D as a fitting parameter gives D
=(3.1%£0.2)x10'° cm?/s. For small thicknesses the
functional dependence of the entire correlation function
agrees with Eq. (2). The solid line in Fig. 1(b) is a least-
squares fit of Eq. (2) to the measured correlation func-
tion, shown as the points, using L, =25 cm and D as an
adjustable parameter. The value of D obtained from the
fit is (2.9+0.2)x10'° cm?/s. The mean velocity, v, in
the medium can be estimated from the relation'® 1/v
=nf/c+ (1 —f)/c, where n is the index of refraction of
the spheres and f is the filling fraction. For poly-
styrene in the K band, n=1.59. This gives v=2.3x10'°
cm/s. Using the Boltzmann relation, D =vl/ 3, the trans-
port mean free path is /=4.0 cm and kl=25.

The distribution of intensity values in 500 intensity
spectra with 625 points each is shown in Fig. 1(c). The
data show that P(I/{I)) =exp(—BI/{I}), where B=1
+0.01 and (/) is the average intensity. This is in

1679



VOLUME 63, NUMBER 16

PHYSICAL REVIEW LETTERS

16 OCTOBER 1989

500 T T T T T T T
asol- @)
400
350}
~~ i
A 300f ‘ ‘
S
250 \
=
.200 I
150 ﬁ f |
100 f | ‘?‘r ‘ |"
050 D, J “ h P‘M 1
J 1 1 1 i\ 1 ] 1
213 215 21.7 21.9 221 223 225
Frequency v (GHz)
T T T T T T T T T
os2| © / -
—— | _
A
<
-~ .066 [ n
o] o =
18) L 140 cm
050 |- |
| i 1 1 1 L It |
16 17 18 19 20

av "V* (MHz) "2

(b)

900 |- i

7001~ L = 140 cm

.500 — -

c' (av)

.300 -

-600 |-/

L)

-1.80 ;/ “
|

-3.00

InP<
<

-4.20 |-

,

“W

|
|
1 1 i L L 1 L ! 1
.400 1.20 2.00 2.80 3.60

(@)

-5.40

FIG. 2. (a) Spectral intensity fluctuations for L =140 cm. (b) Measured values (points) of C/(Av) for L =140 cm. The solid line
is a plot of Eq. (2) using the measured values of D and L,. (c) The tail of the measured C/(Av) shown in Fig. 1(b) vs Av ™2, (d)

Intensity distribution function vs (1/{I))%7,

excellent agreement with negative-exponential statistics,
P(I/AD)) =exp(—1/{I)), expected in the absence of cor-
relation between the amplitudes of different paths. !!

As L increases, however, we find that there are in-
creasing deviations from the uncorrelated-diffusion mod-
el. They are most pronounced for the largest value of L
at which measurements were made, L =140 cm. In typ-
ical measurements of local intensity fluctuations at
L =140 cm, the spectrum seems to float above the base-
line as seen in Fig. 2(a). The virtual absence of low in-
tensity values is seen in P(I/{I)), shown in Fig. 2(d).
For larger values of I, P(I/{I)) does not fall exponen-
tially but is best described as a stretched exponential,
PI/(D)=expl— (I/<I}))"] with y=0.75%0.05. The
prominence of large values of 7 suggests that large fluc-
tuations play an increasingly important role as L in-
creases. C/(Av) is shown as the points in Fig. 2(b). The
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solid line is a plot of Eq. (2) using D=3.1x10'° cm?/s
and L, =25 cm. Though Av; is consistent with the pre-
diction of the uncorrelated-diffusion model, the tail of
C/(Av) no longer decays exponentially but as Av ™'/
[see Fig. 2(c)]. This is the functional dependence of the
first-order correction to C/(Av) in 1/g or 1/8 predicted
by Stephen and Cwilich! and by Feng, Kane, Lee, and
Stone.? It is the same falloff as predicted for the cross-
correlation function of intensities at different points of
the sample and is associated with long-range correlation
resulting from the long-range nature of diffusion.'? The
same slow falloff is predicted for the correlation function
of universal conductance fluctuations'? which are dom-
inated by long-range intensity correlation.

The change of intensity statistics as L increases is
chartered in Table I. The predictions of the uncor-
related-diffusion model are (I/<I)),, =0, where (Z/{I)),
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TABLE I. Tabulation of the change of intensity statistics as
L increases and & decreases. Terms are defined in the text.

L (cm) /D) m y ACH/C! E}
10 =0.02 +0.02 1.0 £0.05 =0 668
20 0.08 +0.02 1.0+£0.05 =0 172
30 0.10 £0.02 1.0£0.05 =0 112
40 0.14 =£0.02 0.95+0.05 =0 87
60 0.15%0.02 0.85 +0.05 0.4+0.2 65
80 0.18 £0.02 0.85*0.05 1.0x0.2 56
100 0.20+0.02 0.80*+0.05 1.3%£0.2 52
140 0.24 £0.03 0.75*+0.05 2.1+0.2 47

is the value of 1/{I) at which P(I/{I)) has its maximum
value, and y=1. The increasing deviation of the cumu-
lant of the measured intensity autocorrelation function,
Clypt, from the predictions of the uncorrelated-photon-
diffusion model in Eq. (2), Cl,, is exhibited in the pa-
rameter AC!/C!=(Clipt — Clnc)/Clyc evaluated at a fre-
quency shift Av=3Av;.

A natural parameter with which to describe the degree
of correlation in the sample is the number of independent
basis states represented in a wave at frequency v. This is
given by the product of the density of states and the level
width, (dN/dv)évg, which is the parameter §. The den-
sity of states for waves confined by reflecting side walls
in a medium of cross-sectional area A4 is dN/dv
=4k 2AL/nv. Svg is obtained from Eq. (1) using the ex-
perimental values of D and L,. The calculated values of
é for our sample are listed in Table I. We find that the
enhancement of correlation as L increases is associated
with the decrease in the value of §. The observation of
strong correlation occurs for large enough values of &
that D is not significantly renormalized.

The reduced probability of low intensity values may be
associated with the transition from a wave with three-
dimensional to one-dimensional characteristics as L in-
creases. Calculations of local intensity statistics have so
far only been carried out in the regime in which § is
large. Therefore, it is not possible at present to make a

detailed comparison with theory.

In conclusion, we have shown that microwave studies
can provide a complete statistical picture of propagation
in random samples. Our results show the increasing
influence of intensity correlation upon local intensity
statistics as the dimensionless level width & decreases.
These results are not a special case related to the
sample’s geometry, L> A4 12 They are universal charac-
teristics which hold for any sample with the same value
of 6.
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