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I»er-Horizon Instability and Mass Inlation in Black Holes
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Gravitational collapse with rotation leaves a slowly decaying radiative tail which becomes infinitely
blueshifted at the inner horizon of the resulting black hole. We study the gravitational effects of this on
the inner structure of the hole, using a simple spherical model. In the presence of outflow from the col-
lapsing star, the gravitational-mass parameter and the curvature are inflated at and within the inner hor-
izon to values which, classically, are unlimited. Implications of this result are briefly discussed.

PACS numbers: 97.60.Lf

In its external aspects, the end point of a gravitational
collapse is rigidly specified by general relativity. Sub-
ject to one unproven but plausible hypothesis (cosmic
censorship), it is established that the external field re-
laxes to a Kerr-Newman black hole, and the radiative
perturbations die out with advanced time according to an
inverse-power law.

Hope that theory might prove equally informative
about internal conditions in the hole and the ultimate
fate of the collapsing material faded after Penrose not-
ed twenty years ago that the inner horizon which is ex-
pected to appear in a collapse with angular momentum
has pathological features which present a barrier to
predictability. In the stationary (Kerr-Newman) state
to which the external geometry tends asymptotically, the
inner horizon is an intersecting pair of lightlike three-
sheets inside the event horizon. The ingoing sheet, corre-
sponding to constant (and infinite) advanced time, acts
as a Cauchy horizon —a boundary beyond which the fu-
ture evolution of physical fields is no longer uniquely
determinable from initial data prescribed at the onset of
collapse. What is more, the Cauchy horizon is highly
unstable to time-dependent exterior perturbations. P.
test field in the form of an initially uniform train of
waves propagating into a Kerr-Newman black hole has
its crests crowded together and magnified by gravitation-
al and Doppler blueshifts that grow without bound at the
Cauchy horizon. Such perturbative results strongly sug-
gest (though they do not prove) that inside a black hole
formed in a generic collapse, an observer falling toward
the inner horizon should be engulfed in a wall of (classi-
cally) infinite density immediately after seeing the entire
future history of the outer universe pass before his eyes
in a Aash.

Repeated confirmation that radiative perturbation s

diverge to linear order at the Cauchy horizon has come
from a long series of investigations. But to date there
has been no attempt to analyze the perturbations beyond
linear order, or to examine how their growth deforms the
background geometry through gravitational effects. This
Letter reports brieAy on a first attempt to tackle both of

these questions.
The problem becomes tractable if one considers a sim-

ple model: A charged, spherical (Reissner-Nordstrom)
black hole perturbed by crossAowing radial streams of
infalling and outgoing lightlike particles. This model is
very idealized, but there are good reasons for believing
that it captures the essential physics. In the first place,
the causal and horizon structures of the Reissner-
Nordstrom and Kerr black holes are known to be very
similar. Secondly, the large blueshift of infalling gravi-
tational waves means that high-frequency components
will dominate near the Cauchy horizon, so that Isaac-
son's "effective stress-energy" description for the waves
(in effect, the "optical, " graviton approximation) should
be an adequate approximation.

We begin by setting up the basic equations of the
problem. The field equations for spherical symmetry are
most conveniently expressed in a form covariant under
arbitrary transformations of the coordinates x' (a,b, . . .

0, 1) in a "radial" two-space (H, y) const. The
spacetime metric is

ds g bdx dx +r dA

where g,& and r are functions of x'. We now define
functions f(x'), m(x') by

1 2m/r+e /r f —g' (B,r)(8br),

where e can be identified with the electric charge within
radius r; here we take it for simplicity to be a constant
(no electric current).

The Einstein field equations are then contain. ed in

d m 4ttr2Tbabr, r ,b+xab —. 4ttrTb,

which imply the conservation law (r T, ).b 0. We have
defined

—x'(r, m) 2 B„f(r,m) (m e /r)/r—
which resembles a Newtonian gravitational force; the
semicolon denotes covariant differentiation with respect
to the two-metric g~b. T, is the nonelcctron part of the
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energy density and flux which we assume to be traceless.
It is to be supplemented by the electric stress-energy
(Tg),~ (e /Sxr )diag( —1, —1, 1,1) [which is separate-
ly conserved by virtue of (2)l to form the total energy-
momentum tensor.

Equations (2) yield two-dimensional wave equations
for the key variables:

&r= r,, ' ——2', am —r '(4rrr ) T' T,b.

In this form the equations can be (formally) integrated:
The general prescription is that &y p(x') has the solu-
tion

y~ —
2 „[ v dS+pc+pD pa (4)

for the value of y at any point A. The integration is over
the interior of a lightlike rhombus in radial two-space
whose vertices are A, B,C,D (in clockwise order, begin-
ning at noon).

Let us now turn to the specification of our physical
model. Inside a black hole formed in a realistic collapse
the space between the horizons is exposed to a shower of
infalling gravitational radiation, whose externally mea-
sured intensity falls off like v ~ when the advanced time
v~ ee, where p 4(1+1) for a multipole of order 1. '

Simultaneously, the inner (Cauchy) horizon is irradiated
by a stream of electromagnetic and gravitational radia-
tion, in part flowing directly out of the collapsing star
and in part backscattered from the infall.

In our simplified mode1, we consider a spherisym-
metric black hole having a fixed charge e and subjected
to radial ingoing (fiowing toward the left in Fig. 1) and
going (rightward) lightlike fiuxes TL pL, 1'1 and
Tz p, n'n, respectively. The radial lightlike vectors
l', n' each satisfy relations of the form I'l, l'.bl I'.,

0, and are still arbitrary up to scale factors conserved
along their rays. We suppose for simplicity that the two
streams interpenetrate without interacting, so that T~,
TL are separately conserved.

Accretion due to the inflow makes the mass of the
hole, as measured in our universe, an increasing function
rnL(v) of advanced time with asymptotic limit rnp (say),
so that mp —mr. (v) —v ' (v ~ ee). We introduce

rp-mp —(mp —e')' ',

x (m —e)' /r V —e

the radius, surface gravity, and Kruskalized advanced
time associated with the inner horizon of the static
Reissner-Nordstrom black hole which the external field
is approaching.

As coordinates with reasonable behavior in a neigh-
borhood of the Cauchy horizon we select V and a
Kruskalized retarded time U (equal to —ee on the event
horizon) based on the outer horizon of the black hole in
its initial static configuration (mass rn~, surface gravity
a.~) prior to the moment (U~, V~) when the cruxes were

FIG. l. Analytically extended exterior geometry of collaps-
ing star, with radiative influx and outflux. Section to 1eft of
star's boundary (stapled curve) bears not resemblance to physi-
cal spacetime. Shown are the event horizon (EH), Cauchy
horizon (CH), inner apparent horizon (AH), and some curves
of constant r (dotted). To make the figure legible, the degree
of deflation of AH has been toned down, and the outflux
turned on for just a short interval.

4nr pR I.R(U)2 dv

dU
dmR(v)

The quantity mR (v ) can be interpreted (within its
domain of definition) as the gravitational mass of the
hole as measured in universe II., growing with advanced
time v because of radiative inflow from JL .

We begin by setting p~ 0 and considering a pure

turned on. If we imagine the exterior manifold analyti-
cally extended to the left (ignoring the presence of the
collapsing star), U would be related to advanced time v

in the asymptotically flat sector marked IL in Fig. 1 by
U —U) e '.

The conservation laws imply that r p& and r pL de-
pend only on U and V, respectively. Choosing n,—8,U, l, —8,V, we can set

2
dm, (v)

4rrr pl. LL (V)
dV dv

(5)
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inflow which continues up to the Cauchy horizon V 0,
and then turns off. In this case, the metric takes a sim-
ple explicit form in terms of Eddington coordinates
(v, r):

ds 2drdu —fdu +r dn

with f given by (1) and m ml, (v). From (5)

L,,(V) -m, ( u)(~.V)

—~in( —V)( &V ' (V-O —).
This implies that a physical observer crossing the Cau-
chy horizon encounters an energy density and Aux

diverging like (6).
Despite this divergence, the perturbation of the metric,

BgUy, remains bounded and falls to zero at the Cauchy
horizon like mo —ml (u) —

~
ln( —V) (

~ ' . This is
not a trivial conclusion. The verification is straightfor-
ward but lack of space precludes a sketch of it here. It is
at least obvious that the second V derivative of the per-
turbed metric does indeed reproduce curvatures of order
(6).

It needs to be emphasized that this seemingly plausible
and routine result is actually something of a miracle.
The black hole is absorbing radiation blueshifted to arbi-
trarily large energies (6), and the integrated energy ab-
sorbed. diverges. One should have expected gravitational
effects of this energy to boost the gravitational-mass pa-
rameter m(U, V) to arbitrarily large values, entailing a
gross divergence of the metric. Of course, observers in
our universe I~ cannot become aware of any such mass
inflation, since we are divorced from causal contact with
the Cauchy horizon on which it occurs. However, it
should be observable (and, indeed, extractible) in asymp-
totically liat universes (such as III., II~ in Fig. 1) which
succeed ours in the analytically extended Reissner-
Nordstrom lattice, and in which m reacquires its direct
operational meaning as gravitational mass. Neverthe-
less, we actually have m mo for V& 0 and there is no
sign of mass inAation. But this is merely an accident of
our specialized model of pure inflow tapering off at late
times. In this case the Cauchy horizon is static and coin-
cident with the associated apparent horizon (defined gen-
erally, in the context of spherical symmetry, as the
three-space f 0 on which a spherical light wave propa-
gating leftward is momentarily stationary). A static sur-
face of this kind serves in two capacities: as infinite
blueshift surface for our universe and infinite redshift
surface for the succeeding universe. Conservation of
gravitational mass is thus achieved in this special in-
stance by a fortuitous cancellation of infinite blueshift
and redshift. However, there is no general law or princi-
ple enforcing conservation of gravitational mass when
general relativity is applied to a latticelike extension of a
conventional universe in which spatial sections are alter-
nately open and closed. The gravitational field inside a
black hole, like the Newtonian field, is a bottomless

+mL (u)+m~(v) m &, (7)

with obvious abbreviations a' cr(v', V'), etc.
It is clear from (7) and (6) that, for positive outllux

I.~(U), m(U, V) becomes unbounded as V O unless
y—=re happens to approach infinity rapidly enough in
this limit. But it is easy to show this cannot happen:
From &cr- ——,

' "'R - —8,x(r, m) and (3) we lind

&(In@)-(3e' —r')/r4, so that

ln y(v, V) -ln [yi. (U ~, V) y~ (U, V~ )/yL (U ~, V ~ )]

y'(3e r' )r' dv'dV—.

Now, yi. (v~, v) is bounded by finiteness of the pure-
inflo~ metric at the Cauchy horizon. The contribution
of the second (integral) term, if it were not bounded,
would have to be negative, since it would then by dom-
inated by values of the integrand near the Cauchy hor-
izon, where r & ro (

~
e ~, so that the integrand is posi-

tive. Therefore the only possibility is that the left-hand
side is bounded above.

Thus we have shown that, in the presence of an out-
Aux, the radiative tail (6) generates unbounded mass
inflation at the Cauchy horizon: m(U, V) —~ ~ for
V~O, U& U(.

Equation (7) provides a ready estimate of the growth

1665

source of energy.
In the presence of a concurrent outflow of energy,

pg &0, the situation is radically altered. Irradiation of
the Cauchy horizon gravitationally focuses its genera-
tors, inducing contraction. The apparent horizon con-
tracts faster (in fact, it dellates catastrophically) and
peels off from the Cauchy horizon. The latter remains
an infinite blueshift surface for material entering the
hole from our universe, but its role as infinite redshift
surface for the succeeding universe is now taken over by
the apparent horizon in its final, deflated stationary
coniguration (Fig. 1). The blueshift at the Cauchy hor-
izon can no longer be neutralized by a redshift, and mass
inflation will occur.

We proceed to the mathematical description of this
phenomenon. We suppose the influx and outflux turned
on at times V~ and U~, respectively, so that m(U, V)
reduces to mL(v) for U~ U~ and to m~(v) for V~ V~,
with mL, (v) m~ (u) m ~ in the initial static state
preceding (U~, V~ ). Since our basic concern is with
effects near the Cauchy horizon rather than S~, we may
conveniently assume Ui &0, i.e., that the outflux turns
on after the event horizon is crossed.

We apply (3) and (4) to a lightlike rhombus whose
outermost past and future vertices are (U~, v~) and an
arbitrarily point (U, V) near the Cauchy horizon. In
our coordinates, the two-metric has a null form, —2e
xdUdV, so we find

U V

m(V, V) -„,J, (r'e') 'i~(V')1., (v')dV'dV'
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rate. If the infiux (measured far from the Cauchy hor-
izon) and the outflux are assumed small, we can expand
in powers of the perturbations LL,L~ about the static
Reissner-Nordstrom background with mass mo, neglect-
ing terms beyond the bilinear order LLL~. This yields
the crude estimate

m(U, V) —moo b(U)e ' (v/mo)

in which e is a dimensionless quadrupole moment of the
collapsing star, and b(U) is the fraction of its rest mass
radiated outward between the moment it enters the event
horizon and the retarded time U. (We assume ie i—mo, so that inner and outer static horizons are not
vastly different in size. ) Given this characteristic growth
time, hv —xo ' —mo, the curvature m/r must reach
Planckian values (as one approaches the Cauchy horizon
at fixed U) in scarcely more than —10 Grno/c sec of
external time after the collapse, even on the most conser-
vative estimates. In sharp contrast to the naive picture,
in which one expects the curvature to revert to moderate
values mo/ro after one has passed through the super-
dense wall at the Cauchy horizon, mass inflation implies
that this rise of curvature is irreversible.

We have drawn far-reaching conclusions from a highly
idealized, spherical model. However, our qualitative dis-
cussion shows that the mechanism of mass inflation basi-
cally just depends on two quite general features: the
in6nite blueshift at the Cauchy horizon, and the separa-
tion of Cauchy and apparent horizons under irradiation
by a transverse Aux. We therefore see little reason to
doubt that our conclusions should remain qualitatively
valid for a generic, rotating black hole formed in a col-
lapse.

Mass infiation forces e/m and J/m to approach zero
near the Cauchy horizon, since charge and angular
momentum J are conserved. Thus, the classical geo-
metry becomes of Schwarzschild-type, and speculations
about the "nuclear region, " r ~ (hG c m) '/, of
Schwarzschild black holes become pertinent, though now
at the enormously larger radius of the inner horizon.
The (classical) proper time required to reach r 0 from
the Cauchy horizon is, however, only about a Planck
time. Even if he were impregnable to enormous blue-
shifts, our infalling observer witnessing the end of our
universe would himself be (at least according to classical
theory) only 10 sec from his own end.

In its simplest schematic form, mass inflation emerges
from the Dray-'t Hooft-Redmount (DTR) relations
for the collision of two lightlike shells near a horizon. In
fact, it was through a generalized form of these relations
that this phenomenon —one of the most remarkable
manifestations of the nonlinear aspects of general
relativity —Grst suggested itself to us. Shortly afterward,
Blau kindly informed us of his very interesting indepen-
dent and parallel work, ' in which the DTR relations are
employed to elucidate Eardley's" scenario for the
"death" of white holes. We are indebted to him for dis-
cussions.
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