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Kapitza Resistance and Thermal Transport across Boundaries in Superfluid 3He
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We calculate the temperature and normal-fluid velocity of superfluid He between parallel plates in
the presence of a stationary heat flow normal to the plates. The system is modeled by a Landau-
Boltzmann equation and a diffuse scattering mechanism at the boundaries. In the hydrodynamic regime
the temperature jump at the wall turns out to be small. The three Onsagar surface coefficients proposed
recently by Grabinski and Liu are determined. In the Knudsen regime the thermal boundary resistance
is found to increase exponentially with decreasing temperature.

PACS numbers: 67.40.Pm, 67.50.—b

There has been considerable interest in recent years in
the flow of quantum liquids in restricted geometries. '

For one, the interpretation of Aow experiments in terms
of bulk properties of the liquid requires knowledge of the
effect of boundaries. Second, the nature of the interac-
tion of a quantum liquid with a solid surface is an in-
teresting problem in its own right, which is still largely
unexplored. One may distinguish two different situa-
tions, depending on whether the influence of the interac-
tion of the particles in the liquid with the boundary dis-
turbs the thermodynamic equilibrium state of the liquid
over a shorter or longer range. For flow channels of ex-
tension large compared to the mean free path I of
thermal excitations a hydrodynamic description supple-
mented by appropriate macroscopic boundary conditions
is adequate. In the opposite limit, the so-called Knudsen
regime, a microscopic description in terms of a distribu-
tion function for thermal excitations becomes necessary.

While transverse flow has been studied extensively, in-
cluding the effect of different types of interaction of the
thermal excitations with the channel walls for both nor-
mal and superfluid quantum liquids, ' flow in the form
of thermal counterflow in a superfluid has not yet at-
tracted similar attention. In this Letter we calculate for
the 6rst time the macroscopic boundary conditions and
the thermal boundary resistance in the hydrodynamic re-
gime, as well as the thermal counterflow in the Knudsen
regime, for the simplest model of a surface, the diffuse
scattering model.

It was shown recently by Grabinski and Liu that even
in the hydrodynamic regime the macroscopic boundary
conditions for the case of thermal flow are more complex
than previously thought. Two related aspects of this are
(i) that the entropy flow f in a superfluid is the sum of a
convective and a diffusive component f sv„—(x/T)dT/
dx (s entropy density, x thermal conductivity) and (ii)
that in the static limit, the temperature T(x) and nor-
mal velocity v„(x) in the presence of a stationary entro-

py flow f vary according to (linearized) hydrodynamics

fo
,Js,

r

a ca/p AT
c ba/p dv„/dx

where j, —pv„ for an impenetrable wall. The form of
the boundary condition (1) will be derived below from
microscopic theory and the surface Onsager coefficients
a,b, c will be calculated below for an isotropic Fermi
superfluid such as He-B.

This requires, in principle, a microscopic description of
the interaction of the particles of the superfluid with the
boundary. At present a microscopic theory on the atom-
ic scale is not feasible. However, we expect simple mod-

as T —T T, e"t +T,+e "t and sv„x(T—T )
+f. Here X is a characteristic length associated with
counterflow, given by I, ax/s T, where a 3 ri

—2gtp
+ f2+ $3p is a combination of viscosity coefficients, p is
the mass density, and x x/W.

Accordingly, the temperature proflle across a solid
wall shows a jump at the wall (within the Knudsen layer
of thickness -l), followed by an exponential decay re-
gion of width X ("A, regime"). A quick estimate of A,

shows that A, =l for superfluid He, but A, =(TF/T)l))l
for superfluid He.

Thus, for He the A, regime cannot be separated from
the Knudsen regime and it is perfectly reasonable to in-
troduce a single temperature jump as done usually. In
the case of He, on the other hand, the question is how
the entropy flow is divided up into the convective and
diffusive parts and which fraction of the total tempera-
ture jump (and even its sign) is due to the exponentially
varying parts (T, ). This is determ—ined by the bound-
ary conditions and has been calculated here for diffuse
scattering of quasiparticles at the wall.

The general hydrodynamic boundary condition derived
by Grabinski and Liu relate the entropy flow fo and the
superfluid mass flow j, (in the rest frame of the normal
fluid) at the boundary to the temperature jump AT and
the normal-fluid velocity gradient (dv„/dx) is
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els of the surface such as the diffuse scattering model or
the specular scattering model to account for the qualita-
tive effects of the surface. In the following we will use
the diffuse scattering model, but our calculations may be
readily extended to other scattering laws at the boundary
(see, e.g., Ref. 3). In the superfluid state, the interaction
of (Bogoliubov) quasiparticles with a surface may be
strongly affected by the possible distortions of the gap
parameter near the surface. These effects will be
neglected here for simplicity.

The dynamics of a weakly excited superAuid on length
scales large compared to the coherence length are de-
scribed by a linearized Landau-Boltzmann equation for
the distribution function of quasiparticles fp or rather
its deviation from equilibrium, bfp fp —fpo —(Bfp/
BEp)bEp. In the single-relaxation-time approximation

for the collision integral one has in a stationary state
(flow in the x direction)

dbf,' I, Bf,' aT
vp» bfp+ p»vg +Ep

dx r Ep T
(2)

Here Ep, vp VpEp, fp, and r are the quasiparticle ener-

gy, group velocity, equilibrium distribution function, and

collision time, respectively. For a start, we adopt the
simplest boundary condition on hfp, i.e., quasiparticles
emitted by the wall are assumed to be in local equilibri-

um with the wall. The corresponding distribution func-
tion is given by bfp(+)(x ) ——(dfp/dEp)(Ep/T)hT,
with 8'T the temperature of the wall. It follows from
(2) that bfp is completely determined by the velocity and

temperature fields v„(x) and bT(x), and given by

-~( -ig) (3)

where

Qp(x) —Xp(Bfp/BEp) (p„v„+EphT/T)

and Ap
- (vp„r)

The variables v„and BT, in turn, obey a set of two coupled linear integral equations, obtained from the conservation
laws for momentum and energy,

gp vp„hfp(x) -0, JEpvp hfp(x) -0,d, d
dx p dx p

which for the parallel-plate geometry ( L/2 ~ x ~ L/2)—take the form

dv,(x'), hT(x')
K) x+ ——K) ——x v„——+ dx' K|(lx x'I ) ", Mo(lx2 2 2 " —«2 dx' T

(4)
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pL/2 I dT(x')+ &'
i

dx' [L,(l x —x'I ) —L, (l x'I )]— d, —[Mo(l x —x'I ) —Mo(l x'1)]v„(x') -0.

Here the integral kernels are defined by

EC„

M,
pLpg vpx

2
0 px

vp» (vp» 7) e p»Ep . (6)
BEp E 2

p

Temperature changes are defined with respect to the
midpoint temperature (x 0), and 2bTI. is the difference
in the temperature of the walls at x —L/2 and x -L/2
(note, x„-~ L/2).

We have solved (3) numerically for an isotropic Fermi
superfluid, where Ep vF (p —pF ) +4, for a range of
values of the ratio L/l. In Fig. I the temperature profile
is shown for the three regimes described above. The ex-
ponential decay of BT for L&&X, is clearly seen. For
I «L «A, the x dependence is almost linear. Only in the
Knudsen regime (L« l) does a discontinuity hT at the
wall develop.

In order to determine the temperature dependence one
needs to know the relaxation time r as a function of T.
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FIG. 1. Temperature profile of superfluid He-8 at T
0.5T, in a slab of width L for three values of L/1 (1 is the

mean free path).

We have used the following approximate expressions for
z(T) and h(T) given in Ref. 8,

z(T) -z(T, ) exp[A(T)/T],
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with the weak coupling values b„=—h(0)/T, -1.76 and
b,C/C~ 1.43. By fitting the numerical results in the
limit L/1 » 1 to the hydrodynamic result calculated em-

ploying the boundary condition (1) we have determined
the Onsager coefficients a, b,c. The resulting values for
a, brr, and ccr in units of —,

' svF/TF are plotted as a func-
tion of h(T)/T in Fig. 2 (o s/p is the entropy per
mass). The coefficient a is seen to dominate at all tem-
peratures. It is found to increase with decreasing tem-
perature as T . The coefficient bo is small and posi-
tive, whereas ca is of similar magnitude and negative.
This leads to (i) the temperature jump at the wall being
negligible compared to the amplitude T,+ of the ex-
ponential decay in the 1 layer and (ii) the boundary con-
dition at the wall being f= (&/T)dT/dx

The thermal resistance Rr 2bTI. /Tf across a slab of
thickness L »1 is then found as Rr (2A/x) tanh(L/2X).
In the limit of wide slabs, L»A, , we find Rz. -(2/s)
x (alrrT) '/2; i.e., the dependence on the mean free path 1

cancels out of the ratio a/x. The T dependence of Rr is
seen to be dominated by the entropy density s, which
leads to an exponentially growing thermal resistance at
low T,

R ——'(x'/2)' [T /C (T )](TW) ' '(a/L-T)' 'e

(7)

where Civ (Tc) is the specific heat in the normal state at
T, and (a/xT) ' —TF/T, vF is a T-independent limiting
value.

In the intermediate regime defined by I«L«X, the
thermal resistance becomes proportional to L and in-

0.00

& —0.01

w —0.02

—0.03

—0.04 I

0.o 2.0
I

4.0 6.0
I I

8.0 10.0 12.0
A(T)/(1~T)

FIG. 2. Surface Onsager coefficients a, b, c as defined in (1)
as a function of temperature. Plotted are the normalized quan-
tities a(2TF/svF), ba (2TF/svF), and co(2TF/svF) vs /s(T)'//T.

versely proportional to the thermal conductivity, Rz-
L/x. Since x' (according to theory) is approximately

proportional to 1/T in the whole temperature range, we
predict Ry ~ T in this regime. In other words, the
thermal resistance Rr is expected to decrease with de-
creasing temperature, until the mean free path increases
sufficiently to become comparable with L.

For L« /, in the Knudsen regime, the hydrodynamic
description breaks down. In Fig. 3, 1nRz- is shown as a
function of T,/T for a slab of width L -101(T,). In the
neighborhood of T, we find R~ ~ T as discussed above.
Below the crossover temperature T„=O.ST, into the
Knudsen regime [defined by L 1(T„)] we find Rr
a: exp(A/T).

Also shown in Fig. 3 is the total thermal resistance for
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needed in order to test the predictions of our theory in

detail. A more complete account of our work will be
presented elsewhere.

We are grateful to M. C. Cross for his contributions in

the preliminary stages of this work and to M. Liu and
M. Meisel for stimulating discussions. This work was

supported in part by NSF Grants No. DMR-8607941
(Y.S. and P.W.) and No. DMR-8616816 (S.K.Y.).

0.0
2.0 3.0

I

4.0 5.0
T,IT

6.0

FIG. 3. Thermal resistance Ry across a slab of width L
10l(T, ) (solid line) and boundary resistance for a single sur-

face bounding a half-space volume of 3He-B (broken line).
Plotted is the logarithm of Rrs(T, )vr vs T,/T.

a single boundary. The result is indistinguishable from a
straight line with slope h(T 0)/T„ i.e., Rr cc exp[8, (T

0)/T], over the complete temperature range.
It is also interesting to discuss the proper Kapitza

resistance (for a review, see Ref. 9) associated with the
temperature discontinuity dT at the boundary, which is
usually defined as Rx= dT/Tf. —Since AT turned out to
be small except in the Knudsen regime, R~ will, in gen-
eral, be small. In terms of the surface Onsger coef-
ficients a, b, c one may express Rz as Rx=(aT) ', us-
ing a&&ha, co.

Experimental data' " appear to be consistent with
Rr ch exp(h/T), although an accurate comparison is dif-
icult due to the complexity of the geometries employed,
the uncertainties in the determination of the boundary
surface area, and the possible effects of a suppression of
the gap at the boundary. ' More data on the thermal
boundary resistance for slabs of different thickness are
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