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Theory of Unstable Thermodynamic Systems
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A first-principles global theory of unstable thermodynamic systems is developed which properly de-
scribes the growth kinetics of quenched systems from early through late times and includes sharp inter-
faces in the late stage description.

PACS numbers: 64.60.Cn, 64.60.My

The inclusion of sharp interfaces in a first-principles
theory of the dynamics of unstable thermodynamic sys-
tems has been a difficult proposition. A global theory of
"spinodal decomposition" is presented here which is val-

id over the entire time regime initiated by a deep temper-
ature quench at time to to late times where coarsening
takes place via the motion of sharp interfaces. The
theory in the long-time limit gives a structure factor
satisfying scaling, ' obeying Porod's law (short-distance
scattering from a sharp interface), and gives growth ex-
ponents in agreement with classical arguments [n
for a nonconserved order parameter (NCOP) and
n ——,

' for a conserved order parameter (COP)]. In the
case of COP the 3 exponent occurs only for long times
after a crossover from an effective exponent of 4 .

In earlier work by Mazenko, Valls, and Zannetti
(MVZ) an appropriate theoretical framework for treat-
ing field-theoretical growth kinetics problems was estab-
lished. The theory of MVZ indicated how one could
separate the ordering and equilibrating contributions to
the evolving structure factor and identify the two impor-
tant length scales in the problem —the average domain
size L(t) and the equilibrium correlation length g. This
theory allows one to calculate various observable quanti-
ties over the entire time scale and these quantities ap-
proached their appropriate 6nal-equilibrium-state values
unlike in earlier theories. While this theory is qualita-
tively appealing, it does not correspond to an ordering
system with sharp interfaces. The theory presented here
remedies this problem by reformulating the MVZ treat-
ment of the ordering component.

The system treated here is the time-dependent Ginz-
burg-Landau (TDGL) model in the presence of Gauss-
ian noise. In terms of dimensionless time and length
scales the basic equation of motion satisfied by the order
parameter field y(R, t) is

- —,
' r(R) [~(R,i) —~'(R, i)

8t
+VR)(ir(R, t)]+@(R,t),

where the noise satisfies

( ri (R, t ) ri (R', t ') &
-ef (R )8(R —R') b (i —t '),

e is a dimensionless measure of the final temperature,
and f (R) ( —Vg)~ with p 0 for an NCOP, while p

1 for a COP. This equation of motion is supplemented

by an initial probability distribution governing y at time
to which is assumed to be Gaussian and the initial struc-
ture factor is given by (y(R, to)yr(R', io)) elb(R —R').

The mapping of this formulation of the problem onto a
functional-integral representation is described by MVZ.
For our purposes here it will suffice to note that the dy-
namics of the y field can be fully described in terms of a
probability distribution P [y]. The key point in the
MVZ development is the introduction of an auxiliary
6eld, m(R, t), which governs the ordering component of
the field. The mathematical steps are simple. First, let
P[y]~ P[)lrnt] P[y]P[m], where P[m] is a properly
normalized probability distribution governing the m
field. Next translate the original field via

y(R, i) -cr(R, I)+y(R, i), (2)
where o is a functional of the field m. In MVZ o. was
chosen as an Ising-type variable which is related to the
field m in a complicated fashion that will not be dis-
cussed here. In the present formulation a is chosen
to be the nonlinear functional of m given by a(R, t)

tanh[m(R, t)]. As emphasized in MVZ the transla-
tion given by (2) is useful only if there is a clear separa-
tion of time scales for o(R, t) and p(R, t). In particular,
the "peak" or ordering variable cr(R, i ) has spatial corre-
lations governed by the "growth law" L(t), while the
correlations of the "phonon" 6eld (t)(R,t) are spatially
local and equilibrate exponentially to the 6nal equilibri-
um (Ornstein-Zernike) form governed by g.

The theory developed here in its most elementary form
is speci6ed primarily by two requirements: (i) P[m] is a
Gaussian distribution. (ii) The variance of P[m] is
determined by requiring

(cr(2) o'(()+('())47(1)—tr (()+vk a(1)l )8t) 1

-(~(2)b(r, —«)~(1)), (3)
where the average is over P[rn], cr(1) cr(R(, t(), and
f (1) 1 (R~). The first requirement is motivated by
simplicity. The second requirement demands that o.

satisfies (1) on average and insures that the long-time
coupling between the cr and p variables vanishes as
t ~ . It is also required that we specify the initial con-
ditions satisfied by the a and m fields. A full discussion
is rather technical, and follows the parallel development
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in MVZ. The upshot is, however, rather simple. The
early-time behavior of the full structure factor is very in-
sensitive to the choice of initial conditions for o.. It is
therefore useful to choose a to have the same initial con-
ditions as for y. For quenches to zero temperature
(e' 0) this completely specifies the theory. For
quenches to e) 0 one must be careful in treating the
effect of noise on the ordering contribution.

The structure factor C„(12) (y(1)y(2)), after using
(2), has a coupling between the variables a and p. As
discussed fully by MVZ, one can treat the coupling be-
tween cr and p using perturbation theory which is valid
for low temperatures (small c). The analysis of this per-
turbation theory for the theory studied here follows that
in MVZ rather closely so it will not, for lack of space, be

reproduced here. For now we focus on the dynamics of
the ordering peak contribution.

To proceed further one must carry out the average
over P[m] implied in (3). This leads implicitly to a
determining equation of motion for the correlation func-
tion Cp(12) &m(1)m(2)). The key technical point in
relating Cp(12) to C(12) (o(1)cr(2)) is the use of the
integral representation

+ dz sin [m(1)z]
sinh(mz/2)

o(1) tanh[m(1)] ~0 (4)

(5)sinh[z iz2Cp(R, t )],

It is then convenient to carry out Gaussian averages over
the fields using the exponential form for the sine func-
tion. Let us restrict ourselves, for simplicity, to equal
times. It is easy to show, assuming translational invari-
ance, that

+z')]

where Sp(t) Cp(O, t). In carrying out the average over
the nonlinear part of the equation of motion in (3) one
can find an identity similar to (4) for cr —0 by taking
the second derivative of (4) with respect to m. It is then
easy enough to work out the Gaussian average determin-
ing K(12) ([a(1)—a (1)]cr(2)),which can be put into
the convenient form for equal times

K(R, E) - —,' ac(R, E)/as. —(t)I c,(R,), (6)

where C(R, t) is given by (5). Using these results in (3)
one obtains the equation of motion for Cp(R, t)
I(R,t)aC.(R,E)/at -2aS.(t)/atK(R, E)

+2I (R) [K(R,E)+Vttc(R, E)],

(7)
where

I(R,t) -ac(R,E)/ac. (R, E) I,,(,i. (8)

Together (S)-(8) form a nonlinear integro-differential
equation determining Cp(R, t) and, in turn, C(R, t).

Before proceeding to discuss the solution to (7) it is
profitable to briefly discuss the basic nature of the ex-
pected solution. The main point is that the local quanti-
ty Sp(t) grows with time without bound. When Sp
grows very large then

S(t) C(O, E) -1—[2/ So(E)]' '+O(So ' ). (9)
For the case of sharp interfaces one expects that S —1

—O(1/L) and one can identify Sp —L .
The next step in the development is to explicitly show

that Eqs. (5)-(8) lead to a dynamics where, indeed, Sp
increases without bound with time. This set of equations
has been solved by first finding good analytic approxima-
tions for C, K, and I in terms of Cp and Sp (asymptoti-
cally exact for long and short times) and then integrating
(7) by direct forward time step integration. In Fig. 1 the
results for Sp(t) are presented for both a COP and an
NCOP. In the COP case el 0.01 while for an NCOP
'EJ 3 In both cases one finds, as promised, that Sp

1606

(10)

and

IR
Ersp cos [ELEC(R)/2]

It is easy to compute the corrections of one higher order
in 1/Sp to (10), (11),and (12). Let us define

L —=2(1 —S) esp, (13)
where the second identity holds to leading order in Sp as
follows from (9). Then after inserting (10), (11), and
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FIG. 1. So vs t for the full theory for an NCOP, with the in-
itial condition el 3, is given by the approximately straight
line. So vs t from the full theory for a COP, with the initial
condition e& 0.01, is given by the curved line. Notice the very
different time scales for the two cases.

E grows apparently without bound.
In the limit where Sp is large [and Cp(R)/Sp is held

fixed] the theory simplifies considerably, for example
(for RaO), (5) can be inverted to obtain

Co(R)/Sp sin [ÃC(R)/2] .

Using (6) and (8) we find in this limit

K(R, t ) (+so) ' tan [mc(R)/2] (11)
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(12) into (7), we obtain the very appealing equation

8 C(R, t) -2I (R) [L tan[xC(R, t)/2]

+VttC(R, t)j (i4)

which is valid for S0»1. This equation is similar in
structure to the basic equation for the peak correlation
function studied by MVZ with two major differences.
We obtain the zero-temperature version of Eq. (3.22) in
MVZ if we linearize the tangent term and replace
x(1 —S) /4 by 1 —S. As we shall see the nonlinear
terms are necessary in order to recover truly sharp inter-
faces. The change from 1 —S to (1 —S) changes the
behavior of S from 1 O(1/L —) in MVZ to the more ap-
propriate form 1 —O(1/L) behavior discussed above.

If we assume a long-time scaling solution C(R, t) F
& [R/L(t)], then (14) reduces to

—px V„F(x) ( —V„)/'[tan(~F/2) +V„'F], (15)

where x R/L, and we assume p L +'8L/8t is a con-
stant. ' If (15) holds, then for long times L —t'/2/'+2.

For an NCOP, p-0 and L-t '/ as expected from the
Lifshitz-Cahn-Allen curvature-driven arguments. While
for a COP, p 1 and L —t '/ which is associated with
the process of surface diffusion. For both a COP and an
NCOP one can proceed to solve (15) for small x and ob-

4

tain in d dimensions

F(x)-1— — (1 —Px + ), (16)2 /x/
(d I ) 1/2

where P (4d+2) '[x/6+p(1 —p)]. As pointed out
by Oono and Puri" the form (16) for the structure fac-
tor leads to Porod's law in Fourier space C(q, t)
—q

("+'i, for iqi ~. For large x the solutions for
the COP and NCOP cases differ qualitatively. For the
NCOP case

F~y —(d —x/2p) —px /2 (i7)
while for the COP case

'0X exp —I-x X —2/3

2p

xcos J3I x 1 — x + pp
2p

where I 8
p'/ and Fp and pp are constants which must

be determined numerically.
The theory developed here allows a very detailed

analysis of the sharp interfaces. Let us look at the solu-
tions of (14) of the form C(R, t) 1 —W(R)/L, for
S'&&L. We find that 8' satisfies the time-independent
equation 2/mW(R) V W(R) for both a COP and an
NCOP. The solution to this equation for small R is
given by

W(R) 2 1 R 1 R
x 2d ap 8d(2+ d) ap

where from (9) and (13), ap Jx. For large R
' 1/2

W(R) — R2 1
, /2

+ d/2 fcos(ylnR+ p
1

(d —1)'/ R /

where y 2 (8d —8 —d ) '/ and f and p can be deter-
mined numerically. The leading term in (20) agrees
with the scaling result (16) leading to Porod's law. The
other terms represent corrections to scaling.

These analytical results can be shown to follow from
the full theory (7) by a direct numerical solution. The
calculations were carried out on a square lattice where
S(t) and the 6rst zero of C(R) were computed' for the
full theory (7) and for the "long-time" theory (14) with
the same initial condition el 0.01. The long-time
theory is in remarkably good agreement with the full
theory even for intermediate times. They both converge
to the same long-time results.

Our analysis for the NCOP case seems acceptable in
all respects. In the COP case, however, one expects'
from the arguments of Lifshitz and Slyozov and Bray'"
to obtain a long-time growth law of t ' in contrast to the
t ' results found above. Indeed a careful analysis shows
that the theory given above for the peak contribution is
unstable in the COP case to a set of weak perturbations

+ 0 ~ ~ (19)

)+. (20)

+VttCq(R, t)] . (2i)
In the long-time limit S(t )~ 1, one can drop the
VttC&(R, t) term in (21) and C& can be associated with

which leads to a long-time crossover to t' . In con-
structing the basic equation of motion (3) satis6ed by
the peak variable cr(1) we assumed that we could ignore
any coupling to the phonon 6eld p and that correlations
between cr and p vanish in the long-time limit. This de-

cay of correlation is correct, but for sufficiently long
times we have, for example, 8C(12)/8ti —O(L ) and
the small coupling between cr and p may be of this order.
One finds in perturbation theory that there is a cou-
pling between p and cr which adds a term H(R, t) ——2
xVx3S&(t)C(R, t), where S& (p (R, t)), to the right-
hand side of (7) or (14). To the same order of approxi-
mation Cc,(R, t ) (p(R, t )p (0,t )) satis6es

Cc(R, t ) —2Vtt(R) [ [1 —3S(t)]C~(R, t )
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diffusion in the system. In this case S&—t and, in
the scaling regime, H(R, t) —L t "/ «L. and it is
consistent to not include H(R, t ) in (7). Note, however,
that the diffusive process described by (21) is decoupled
from the sharp interfaces in the system. By redefining
how we separate a and p in (2) we can couple C& to the
interfacial motion and add to the right-hand side of (21)
a term which at late times is given by

2I (R)(gp/L ) tan[mC(R, t)/2],

~here go is a constant. This is at the expense of sub-
tracting a similar term from the right-hand side of (7).
We see that the term added to (21) goes as L in the
scaling (R —L) regime but as L for R «L, due to the
sharp interfaces. With such a term the solution of (21),
for large times and 1 &&R &(L, is given by

Cs(R, t )—(gp/L ) [xW(R) ] ' —gp/RL, (22)
which is just the solution for a diffusion Geld in three di-
mensions. Note, however, under these circumstances
that St,-O(1/L). The term H(R, t) added to the right-
hand side of (7) or (14) is then of O(1/L ) in the long-
time limit. One immediately has, from power counting
in 1/L, that the perturbation proportional to gp, no
matter how small, will lead to a long-time crossover to a
growth law of t' . The associated mechanism seems
qualitatively in agreement with that discussed by
Lifshitz and Slyozov. The results here are in agreement
with those obtained by Bray. ' His method is restricted
to the COP case and the longest distance and time scales
where the diffusion mechanism discussed above shou1d
be operative. As one might guess, the full treatment of
this coupling between the p and a variables is complicat-
ed and the analysis of the crossover nonuniversal. A
main consideration in this development is that the short-
distance behavior (Porod's law) is not strongly in6u-
enced by this crossover. It is also clear that there is some
substantial time regime over which the surface
diffusion' is dominant since it is relevant for setting up
the sharp interfaces. Discussion of the nature of the
crossover and many other details will be discussed else-
where.

The range of applicability of the theory developed here
appears broad. Clearly the problem of nucleation and
front propagation' within the context of a TDGL model
can be treated using this technique and are under current
investigation. Less well understood is how transferable
this approach will be for treating other systems. In par-
ticular, the robustness of the functional transformation
given by (4) has not been systematically investigated.
One could consider more general nonlinear transforma-
tions and relax the constraint that P[m] be Gaussian. It
is not yet clear, however, that this offers any particular
advantage, while clearly it will complicate the structure
of the theory.
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