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Path-integral Monte Carlo calculations have been used to study He clusters at low temperatures. %e
develop a fluctuation formula for the superAuid fraction in terms of a projected area swept out by a path.
Manifestations of superfluid behavior are shown to exist in a cluster of 64 atoms and a remnant of the A.

transition persists in a cluster of 128 atoms. The temperature dependence of the superfluid fraction is
similar to that observed in the liquid.

PACS numbers: 67.40.—w, 36.40.+d

The properties of He clusters have attracted much
experimental and theoretical interest. ' Superfluidity
has been reported in small ((110k.) bubbles of He
con6ned in Cu foils. One might therefore expect gas-
phase He clusters of analogous size to show superfluid
behavior. However, attempts to provide experimental
evidence of superfluid behavior in clusters has so far
proved to be inconclusive. ' By contrast, there has been
considerable progress in theoretical work which has
largely focused on the calculation of ground-state prop-
erties. Energy and density pro61es have been computed
using quantum Monte Carlo methods and density-
functional theory. One remarkable result that emerged
from these studies was the predicted smooth evolution of
the ground-state energy as a function of the number of
atoms in the cluster; i.e., there is an absence of magic
numbers in neutral clusters. The ground-state conden-
sate fraction has been investigated as a function of clus-
ter size using variational calculations. But, no 6nite-
temperature investigations have yet been carried out.

Here, we report the results of a 6nite-temperature
path-integral Monte Carlo study of He clusters that in-
cludes the effect of Bose statistics. The method we em-

ploy, and the calculational procedures, have achieved
notable success in probing the superfluid transition of the
bulk liquid ' and the two-dimensional counterpart. '

Our main flnding is that manifestations of superfluidity
exist in a cluster of 64 atoms and that even in a cluster
this small, at a given temperature the magnitude of the
superfluid fraction is surprisingly similar to that in the
bulk liquid. "

The statistical mechanical properties of an ¹ tom
system are determined by the density matrix which, in

the Feynman path-integral representation, is factored
into M time slices

p(R, R';P) „„dR| dR~-i p(R, R|,r)
x p(Ri, R2, r) p(R~ —|,R';r) .

Here, r P/M, the variables R are points in a 3N-
dimensional space, and (R,R|,Rz, . . . , R') denotes a
discretized path. This device, along with an accurate ap-
proximation for the high-temperature (small-r) density
matrix, allows calculation of p(R, R';P) at a temperature
a factor of 1/M lower than P. As in the studies of the
bulk liquid, the small-r approximation used here is of the
pair product form

p(R, R';P)

+pi�(r;,

r;;r)+exp[ U(ri, r J;r—)),

where, ij 1,N; pi is the free-particle propagator and
the nonideal part is contained in the second term. For a
Bose system, the density matrix is obtained by summing
over all permutations P of particle labels

p(R, R';P) (I/N!)Qp(R, PR';P) .
P

Both the integration over paths and the summation
over permutations are performed by a generalized
Metropolis algorithm whose implementation is discussed
in detail elsewhere. The N atoms comprising the cluster
interact via an accurate interatomic pair potential. '

In the two-fluid model description of liquid He, the
normal and superfluid parts can be deflned (and experi-
mentally measured) by their different responses to an
external perturbation. Indeed, this fact allows the
derivation of microscopic expressions for the superfluid
or normal fractions. The superfluid fraction for a system
with periodic boundary conditions (i.e., a homogeneous
bulk liquid) can be computed either from the so-called
winding number of the discretized paths or from the
momentum density correlation function (p(r) p(0)).
Usually, one de6nes the normal fluid fraction from the
response of a system to boundary motion or to an exter-
nal 6eld. In the present case, we imagine that the cluster
has been placed in an external 6eld, which is assumed to
have cylindrical symmetry about an axis passing through
the center of mass of the cluster. We then consider the

1989 The American Physical Society 1601



VOLUME 63, NUMBER 15 PHYSICAL REVIEW LETTERS 9 OCTOBER 1989

cluster's response to slow rotation of the field with an an-
gular frequency, m cou. The setup closely resembles
He enclosed in a cylinder; a situation that has been ex-

tensively discussed in the literature. ' As in that case,
the superfluid fraction can be determined by the depar-
ture of the moment of inertia tensor I from its classical
value I or from the angular momentum density correla-
tion function &L(r) L(0)&, where L denotes the total an-
gular momentum.

The properties of the cluster are determined by p, the
density matrix of the system in the rotating field. The
density-matrix operator in a frame at rest with respect to
the field (primed frame) is determined by the Hamiltoni-
an, H' H —L co. Since, the scalar operator L m is un-
changed in going to the laboratory frame, p„p'

Tr{exp[—PH'lf. The expectation value of L u is
&L&„Tr[LpJ/Tr{p j and, by definition, the moment of
inertia with respect to u is given by I (ti&L& /Bro) -o.

For a classical system with density distribution p(r),
the moment of inertia is given by I m fdrp(r) ~

u

iver

~
. The normal fraction is the part of the cluster that

responds as a classical system, namely,

tend the integration limits to infinity and find

P(n) =exp[ —n (mA, /2I )/(1 —4A m/k I*)1.
Thus, bosons will show fewer fluctuations in angular
momentum than classical particles by an amount propor-
tional to the superfiuid fraction

(I~ —I)/I~ ~4$7t &/ &/Pg I~ .

By direct computation, we find ln{P(n)l to be a linear
function of n for n (30. Moreover, values for the nor-
mal fraction are essentially indentical using either ap-
proach.

We employed the full density matrix which allows for
much larger values of i than the primitive end-point ap-
proximation and choose a value of ~ corresponding to a
temperature of 40 K; a procedure which is known to
yield satisfactory results for bulk. The lo~est-
temperature simulations required more than 200 h of
central-processing-unit time on an IBM 3090/200 E with

To proceed further, an appropriate estimator for the
path-integral evaluation of I is required. This is ob-
tained by twice differentiating Tr{p j with respect to co.

With the abbreviation X h P/m we find

where

I -m g g (u x r; „)(u x r; „+1)/M

-1.0

hC

U)
-2.O

I
C

LU

-3.0 &

and

A gg(r; „xr; „~1)/2.

-4.0

7/K

The position of particle i at the time slice x is r; „and
r; ~ Pr; o. On the average, &A& 0 and &I &-I*. For
a given axis, the deviation of the moment of inertia from
its classical value is related to the expectation value of
the square of the surface area A enclosed by the Feyn-
man paths projected onto a plane perpendicular to that
axis.

The moment of inertia, and therefore the normal frac-
tion, may also be computed from P(n) &8(L —nh)&, the
probability that the angular momentum has the value nh.
A path-integral estimator for P(n) is

5.0

4.0—
~~0
6$ 3.0
CO

O
2.0

COIX
1.0

P(n) (1/2x) J d8g(8)exp[ in8], —

where the integration extends from —x to m. For small
r (large M),

g(8) &exp[{2A8—I 8 /2m]X I&.

Since g(8) is strongly peaked around 8 0, we can ex-

0
T/K

FIG. 1. Path-integral results for the (a) energy and (b) heat
capacity of ~He clusters with N 64 (open circles) and 128
(solid circles). The T 0 K energy values were taken from
Green's-function Monte Carlo calculations (Ref. 2). The solid
line refers to the bulk heat capacity (Ref. 11) and other lines
are drawn as a guide to the eye.
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FIG. 2. Selected examples of radial density profiles for He
clusters. The bulk liquid density, p 0.022/A, is indicated.

attached vector processors. The existence of correlated
subaverages in analysis of the data points for the N 128
cluster suggests that even longer runs may be necessary.
Figure 1 shows results for the energy and the heat capa-
city as a function of temperature for N 64 and 128.
Around 1.9 K, a distinct bump can be discerned in the
heat capacity of the larger cluster; a feature much less
evident for the smaller one. This observation is con-
sistent with the notion that the bulk A. transition becomes
smeared out in a inite system. The present results extra-
polate smoothly to ground-state energy values from pre-
vious calculations. '

There is always a chance that atoms will evaporate
during the simulation at 6nite temperature; a problem
that is particularly acute for helium. In order to circum-
vent this difficulty, we restricted the Feynrnan paths to
lie within a radius R, from the center of gravity of the
paths. The choice of R, is a somewhat delicate matter:
It should be large enough to minimize the influence on

the cluster, but it should also be sufficiently small to
avoid having atoms in the vapor. The present choice
(R, 18 A.) was guided by available zero-temperature
density pro61es ' and is consistent with simple thermo-
dynamic arguments. Figure 2 shows a selection of radial
density pro61es, at different temperatures, for both clus-
ters. The density in the tail of the pro61es increases
slightly with temperature but overall the pro61es are very
similar to those reported previously for 0 K. In all
simulations, the density at R, is very small.

The temperature dependence of the normal fraction is
shown in Fig. 3. For both clusters, the normal fraction
decreases strongly with temperature below 2 K; a behav-
ior reminiscent of bulk He. In the Feynman-path-
integral representation, superfluidity is connected to the
existence of very long paths involving several permuting
atoms. In bulk He these paths result in the nonzero
asymptotic value of the off-diagonal one-body density
matrix (off-diagonal long-range order) and the presence
of a Bose condensate. For an inhomogeneous fluid the
probability that an atom is part of a permutation cycle
involving p atoms provides a measure of the degree of
superfluidity, provided that p is not too small. Our clus-
ter simulations reveal that the probability for large per-
mutation cycles increases dramatically below the bulk
X,-transition temperature. This effect is illustrated in Fig.
4. There we show the temperature dependence of II(r),
the fraction of the radial density pro6le due to particles
involved in permutation cycles of six or more atoms.
This measure of the superfluid density is large in the sur-
face region but, as expected, drops to zero at the cluster
surface.

In summary, it is striking how little the presence of a
surface has influenced the phenomenon of superAuidity.
An investigation into the nature of dynamical excitations
in these superfluid droplets would be most interesting. '
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FIG. 3. Evolution of the normal fraction in He clusters
with N 64 (open circles) and 128 (solid circles); the solid
curve refers to the bulk (Ref. 11).

FIG. 4. Evolution of the fraction of the radial density profile
due to permutation cycles involving six or more atoms in He
clusters with N 64 and 128 atoms.
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