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The long-standing problem of the linear, bi-Maxwellian neutral-sheet tearing instability is solved

without recourse to an approximation of the orbits or the constant-y approximation. We are therefore
able to consider regimes beyond the validity of previous theories. As the temperature anisotropy is in-

creased, the growth rate increases and the wavelength associated with the peak growth decreases.

PACS numbers: 52.35.Py

The collisionless tearing instability has been studied
both in the laboratory' and in the geophysical context
as a possible explanation for the onset of reconnection.
In the neutral-sheet geometry, the magnetic field re-
verses direction and particles near the magnetic null exe-
cute complicated trajectories. Although the collisionless
tearing instability of Maxwellian and bi-Maxwellian
neutral sheets has been studied for over twenty years,
no solution of the linear problem has been given which
does not use approximate orbits or an assumed form for
the eigenfunction (e.g. , the constant-y approximation).
Recently, the instability in neutral sheets with tempera-
ture anisotropy ' has attracted renewed in-

terest. '" '"' The linear growth rate of the isotropic
tearing instability is generally too small to explain the
observed time scale for the onset of geomagnetic sub-
storms. One possible resolution of the problem is the in-

clusion of an ion temperature anisotropy, ' which
enhances the growth rate considerably. However, it was
found that differing levels of sophistication in treating
the unmagnetized ion orbits can lead to widely differing
growth rates, ' ' indicating that an exact treatment of the
orbits is critical. In this Letter we will present the re-
sults of the first study of the linear collisionless tearing
instability in a bi-Maxwellian neutral sheet which em-

ploys neither approximate orbits nor an assumed form
for the eigenfunction of the perturbations.

For this work, the equilibrium is taken to be the
Harris equilibrium, ' B=Bptanh(z/8)e, that includes
a bi-Maxwellian velocity distribution, fp[(H~ —VP~)/
T&,H~~/Tt~ j. In the classic studies the perturbations
of the fields are represented by A~ (x,z, t) =y(z)
x exp(ikx+ yt), where A~' is the y component of the per-
turbed vector potential. The electrostatic potential is not
necessary provided p;/8 is small compared to unity in the
isotropic case. ' In the anisotropic case, the effect of the
electrostatic potential has yet to be evaluated.

The growth rate and eigenfunctions are obtained from
Ampere's law,
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Performing the integrations of Eqs. (3) and (4) is

difficult and has been traditionally accomplished by us-

ing various approximations both on y and on the unper-
turbed orbits. In most analyses physical space is divided
into two regions, an outer region, with

~
z

~
& d„and an

inner region, having
~
z

~
(d, . The parameter d, is usu-

ally chosen to be d, =(2p, B)' . In the outer region the
electron orbits are assumed to be fully magnetized, while
in the inner region the trajectories are approximated by
those of free particles colliding elastically with barriers
at z = ~ d, . The inner-region current required to match
the inner-region and outer-region eigenfunctions is pro-
duced by the acceleration of the unmagnetized inner-
region charges by the induction electric field. By
demanding the matching condition that d(in@)/dz be
continuous at z = + d„ the magnitude of the induction
electric field and hence the growth rate of the perturba-
tion are determined.

Chen and Palmadesso'' found that a moderate ion
temperature anisotropy of T;&/T;~~=1.2-1.5 increased
the growth rate by 1 to 2 orders of magnitude. This was
later confirmed by simulation results. ' Another major
result of Ref. 11 was the identification of an ion-
intermediate region within which the ion orbits were tak-
en to be of the unmagnetized type but the electron orbits
were taken to be magnetized (the "three-region" approx-
imation). It was found that the inclusion of this region
in the calculation increased the growth rate by nearly an
order of magnitude over calculations using only the two

where the perturbed current is given by
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The perturbed distribution function is determined by the
single-particle response to the perturbed fields,
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regions for the anisotropic case. The conclusion of Ref.
9 that the ions are unimportant, which is based upon the
two-region approximation, was thus found to be in-
correct in the ion anisotropic case. This realization led
Chen and Lee' ' to develop a method in which growth
rates could be calculated taking into account all of the
orbits exactly and without assuming the form of y. This
is possible in the neutral-sheet geometry because all of
the orbits are periodic in z. The integrals in Eqs. (3) and
(4) may then be expanded in a sum of integrals over the
orbit,

(ikr, +r)(i i)' —
—oo
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n y+ikv, +in n

where 0 is the frequency and T the period of this orbit.
The low-frequency approximation may now be invoked,
leaving only the n =0 response. The eigenfunction, y, is
then expanded in a set of linearly independent basis
functions (in this case, chapeau basis functions).
Ampere's law, Eq. (1), can be represented as a matrix
equation and the eigen values calculated numerically.
The growth rate is then varied until an eigenvalue be-
comes zero. In Ref. 19 this method was applied to the
case of a 6-function distribution in H&. However, this is
not directly applicable to the magnetosphere since nei-
ther the isotropic Maxwellian nor the bi-Maxwellian is a
possible limit of the 6-function distribution.

In the present work, we have applied this method to
the neutral sheet with a bi-Maxwellian distribution func-
tion and, for the first time, obtained solutions of Eq. (1)
without using approximate orbits, or assuming the form
for y. Details of the application and a comparison to the
approximate theory of Chen and Palmadesso will be
presented elsewhere. '

In Fig. 1, we show the dispersion relation for the case
of p;/8=1/10 and T;&/T;t =1.2. The solid curve is ob-
tained by solving Eq. (1) with no approximation for the
orbits or for y. The dashed line is the result of the
three-region approximation. '' For all of our results, we
have used an isotropic electron distribution with

T,/T;~ =0.1, which is typically used in studies of the
magnetotail. We should note that our boundary condi-
tions are that y(z) exp( —k

~
z

~ ) as
~
z

~
. A

second possibility, fixing y'(H)//y(H), can lead to
enhanced growth' for kH~1. The peak growth rate of
the solid curve, y,. „/cu„at kB=0.8, is approximately 5
times greater than the corresponding result of the three-
region treatment, the best previous approximation.

In Fig. 2, we show the dependence of the peak growth

y „on the ion temperature anisotropy for five values of
p;/8 between p;/6=1/100 and p;/6=1/2. Curves a-e
correspond, respectively, to p;/8=1/100, 1/20, 1/10, 1/4,
and 1/2. In each case, we see an enhancement in the
growth rate by the ion anisotropy. In addition, the de-
gree of the enhancement is greater for smaller values of
p;/8.

A qualitative understanding of the growth-rate
enhancement can be found by considering the orbit in-
tegrals in Eqs. (3) and (4) and then using 6H& and BH~~

in the equation for the perturbed current, Eq. (2). We
will use approximate orbits for our qualitative discussion
even though the treatment employed in this work uses
the exact orbits. In general, the adiabatic current [the
first term in Eq. (2)J dominates the contributions of BH j
and BH~~ for the magnetized orbits far from the null

plane. But on the other hand, the contribution due to
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I. IG. 1. The growth rate as a function of wave number for
p;/8=1/10 and T;~/T;~~ =1.2. The solid curve is the result if no

approximations are made on the eigenfunction and the orbits;
the dashed curve is the three-region result.
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FIG. 2. The peak growth rate as a function of ion tempera-
ture anisotropy. For curve a, p;/6=1/100; for b, p;/8=1/20;
for e, pf/6 =1/10; for d, p;/6 = 1/4; for e, p;/6 = 1/2.
T,~ = T, ~~

=0. 1 T; ~ for all of our results.
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straight-line orbits near the null plane is commensurate
with, or dominates, the adiabatic current. Generally, the
perturbed fields perturb the current through the unmag-
netized particles in two ways. The first way is through
the acceleration of the charges by the induction electric
field F~', represented by the first term in Eq. (3), and the
second is through the rotation of the velocity vectors by
8,'. In the isotropic case, the terms involving 8,' in BH&
and BH~i cancel when included in the perturbed current
and integrated over the velocity distribution, leaving only
the contribution from the term containing E~'. In the an-
isotropic case the terms containing 8,' do not cancel, and
instead yield a second contribution to the perturbed
current. For a temperature anisotropy a ) 0 [where
a=(T~/T~~ —1)] in either the ion or electron distribu-
tion, it can be shown that this contribution to the current
partially cancels the current due to the induction electric
field. For a (0 the effect is the opposite. Since the adi-
abatic current is the dominant contribution in the mag-
netized region, the relationship between the external per-
turbed field and the perturbed field near the null plane,
which for the two-region or three-region approximation
is expressed in the form of matching conditions, must be
roughly the same in the anisotropic case as in the iso-
tropic case. Physically, the net perturbed current near
the null plane (the sum of the contributions due to Er'
and 8,') is determined by the overall geometry of the
perturbation, essentially irrespective of the degree of an-
isotropy in the unmagnetized orbits. Thus, in the aniso-
tropic case, the induction electric field must drive a
greater current to make up for the canceling effect of 8,'
which means that the growth rate of the perturbation
must be larger than in the isotropic case.

In Fig. 3, we show the dependence of the characteris-
tic wavelength (the wavelength of the fastest growing
mode, 1„=2rr/k,„) on p;/8 for five different values of
the temperature anisotropy. Curves a through e corre-

spond to temperature anisotropies 1.0, 1.05, 1.1, 1.2, and
1.5, respectively. In the isotropic case, curve a, the peak
wavelength is about 156', and essentially independent of
p;/6. For sufficiently large values of the anisotropy,
a; & p;/8 the characteristic wavelength becomes propor-
tional to the ion gyroradius for a constant magnetic scale
length. For p;/8(0. 05 and T;&/T;~~)1.5, the charac-
teristic wavelength becomes comparable to the magnetic
scale length or smaller. Considering the peak growth
rate as a function of p;/6 for these same values of the
temperature anisotropy, Fig. 4 also shows a change in
behavior between the nearly isotropic tearing instability
and the anisotropic instability with a; p;/8. For the
isotropic case, curve a, the growth rate adopts the ex-
pected dependence upon (p;/8') / . For larger tempera-
ture anisotropies, a;)p;/6, the growth rate increases
with decreasing values of p;/B.

The striking change in the characteristics of the insta-
bility as the ion temperature is increased above a; p;/6
leads one to classify the anisotropic instability as a
different instability from the isotropic tearing instability.
Clearly, for the anisotropic instability the free energy is
dominated by the nonthermal distribution rather than
the magnetic field gradient. Indeed, case e of Fig. 4 (for
p;/6(0. 1) may be interpreted as a reduction in the
growth rate of the anisotropic instability by the increas-
ing magnetic field gradient (since we can view an in-
crease in the parameter p;/8 as a decrease in 6 with p;
fixed). The growth rate only increases with an increas-
ing magnetic field gradient when a; (p;/8 (for example,
p;/8 —0.25 for case e). In the collisional case, this
change in behavior led Shi, Lee, and Fu' to classify the
instability for large temperature anisotropy as a mirror
instability rather than a tearing instability.

Characteristic values of the parameter p;/8 in the
Earth's magnetotail, for example, can vary widely de-
pending upon the distance from the Earth and conditions
in the solar wind. For 1-keV protons in a 2x10 -G
field, a magnetic scale length of one Earth radius gives

10.0
10

I—2

1.0
10

O.l
0.01 0.1 1.0

FIG. 3. The wavelength at the peak in the growth rate as a
function of p;/k For curve a, T;~/T;~~ =1.0; for b,
T i/T;ii =1.05; for c, T;i/T~~ =1.1; for d, T;&/T;i~i=1.2; for e,
Tii/Tc» =1.5.
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FIG. 4. The peak growth rates for the cases of Fig. 3.
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p;/6=1/40. Values of p;/b for the Earth's magnetotail
may be larger than this estimate under diff'erent condi-
tions. Field-reversed-configuration fusion experiments
usually operate in the regime of p;/8=1/10, although
fusion energy requirements may force a decrease in this
parameter. In both of these situations, then, a small
temperature anisotropy could greatly aff'ect the time
scale for the onset of reconnection. In some scenarios,
compression of the current sheet continues until the
tearing-mode growth time is small compared to the time
scale of the compression. The existence or the develop-
ment of an ion temperature anisotropy could
significantly increase the current sheet width finally
reached before the onset of the instability.

We have found ' that in the isotropic case, the three-
region approximation underestimates the growth rate by
more than an order of magnitude for p;/6~0. 05. For
the anisotropic case, an order-of-magnitude error also re-
sults for anisotropies a; ~ p;/k For the limited range of
0.05 ~p;/8&0. 5 and tt; &p;/6 the error is less than a
factor of 2. Thus, consideration of the stability of the
magnetotail or of a field-reversed configuration which
has even a moderate anisotropy T&/Tt ~ 1.1 requires the
use of this full solution.

In conclusion, we have solved the collisionless tearing-
mode problem in a neutral sheet with Maxwellian and
bi-Maxwellian distributions. Since our solution does not
use approximations on the equilibrium orbits or the
eigenfunction y, the range of validity is greatly expanded
over the best previous approximation, the three-region
approximation. The results show that with increasing
T;&/T; t, the linear growth rate increases (Figs. 2 and 4).
For tt; p;/b the instability exhibits a behavior which is

qualitatively different than the usual isotropic tearing
mode (Figs. 3 and 4). Note that increased T;&/T;t de-
creases the characteristic wavelength (A.„ in Fig. 3). We
suggest that if small-island formation (X,, (108) is ob-
served in experiments then temperature anisotropy may
be present. On the other hand, a phase of island coales-
cence is thought to follow the linear growth
phase' ' ' so that the final island size could be larger
than that predicted on the basis of linear theory.

Useful discussions with Y. C. Lee and J. F. Drake are
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Office of Naval Research and by NASA.
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