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Temporal Quantu~ Fluctuations in Stimulated Raman Scattering: Coherent-Modes Description
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Temporal quantum fluctuations of the intensity of light pulses produced in the linear regime of stimu-
lated Raman scattering are observed. A theoretical description based on the concept of coherent tem-
poral modes is presented. The method makes use of a minimum number of random variables, which are
the excitation amplitudes of the temporal modes, and allows an estimate of the probability for generating
a Stokes pulse that is likely to form a soliton in the nonlinear propagation regime.

PACS numbers: 42.50.—p, 42.65.—k

Several interesting aspects of the generation of macro-
scopic light fields by quantum-initiated stimulated Ra-
man scattering (SRS) have been clarified in recent
years. Using the Heisenberg-picture quantum theory of
SRS, ' full-scale fluctuations of macroscopic Stokes-
pulse energies were predicted and observed. 45 The
agreement between theory and experiments supports the
assertion that the statistics of the spontaneously generat-
ed Stokes field are thermal-like (i.e., Gaussian) in the
absence of molecular saturation or pump-laser depletion.
In parallel developments, Druhl, Wenzel, and Carlsten
reported the first observations of soliton pulses in SRS
when the pump laser pulse was strongly depleted. ' It
was determined that the soliton pulses were associated
with a tr phase shift in the Stokes field. It was pointed
out by Englund and Bowden that these spontaneous soli-
tons could arise naturally from the quantum-noise-
driven phase fluctuations expected to occur during the
buildup process of the Stokes pulse. A connection was
made also to the so-called phase waves predicted earlier
by Hopf to occur in two-level superfluorescence. Thus,
the Stokes pulse-energy fluctuations and the spontaneous
soliton formation are thought to arise from the same un-

derlying mechanism: quantum-noise-driven temporal
fluctuations of the Stokes 6eld as it builds up from the
zero-point motion of the molecular oscillators (or,
equivalently, vacuum fiuctuations of the radiation field).

This paper presents direct observations of the temporal
quantum fluctuations of the Stokes pulse intensities, and
offers a powerful and intuitive method for their analysis
and interpretation. By decomposing the Stokes 6eld into
"coherent temporal modes, " the nature of the fluctua-
tions is described in terms of a minimum number of ran-
dom variables. The fluctuations of the SRS frequency
spectrum resulting from exciting more than one temporal
mode were 6rst reported by MacPherson, Swanson, and
Carlsten. '

The observations were made using a Q-switched Nd-
doped yttrium aluminum garnet laser, with frequency-
doubled output pulses with wavelength 532 nm, duration

7 nsec (FWHM), and energy 2 mJ. The laser was
injection seeded to ensure single-longitudinal-mode
operation. The laser beam was collimated to a cross-
sectional area (intensity half maximum) of
A -2.8x10 3 cm2 and passed through a cell of length
L-50 cm containing H2 at 100 atm, with a Q(l) col-
lisional linewidth (HWHM) of I 1.7x 10' rad/sec
(Ref. 11). The resulting Fresnel number A/kL of the
interaction region was equal to 0.8, leading to a near-
diffraction-limited generated Stokes beam at 680 nm.
The gain coefficient is estimated to be g -0.33 cm ' for
these conditions, " leading to an observed average energy
conversion efficiency of 3%. The coherence time of the
generated Stokes light is estimated to be 2(gL) 'l I =0.7
nsec. Since the generated pulses have duration of about
2 nsec, some phase amplitude modulation is to be expect-
ed. The Stokes pulse intensities were recorded with a
streak camera having a resolution of 30 psec.

Figure 1 shows eight examples of typical Stokes pulses
observed under these conditions (out of an ensemble of
about 100 pulses). The differences in shapes and in-
tegrated energies are believed to be due solely to quan-
tum uncertainties in the initiation process. Of the many
temporal shapes recorded, the symmetric shapes (a), (b),
and (e) were observed occasionally. The random oc-
currence of these simple, smooth shapes from a noise
generator can be understood using the method of
coherent temporal modes.

Since the Fresnel number A/LX is less than unity, the
generated Stokes field is approximately spatially
coherent. ' Then the slowly varying Stokes-6eld opera-
tor E, (t) at the output face (z L) of the generator
cell is approximately independent of the transverse spa-
tial coordinates and can be expanded in terms of a com-
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FIG. 1. Examples of random time evolution of Stokes pulse
intensity, all occurring under identical conditions. The shapes
are ordered roughly from most probable (a) to least probable
(h). At lower H2 gas pressure only single-peak shapes such as
(a) are observed. The fast structure is noise in the streak cam-
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FIG. 2. (a)-(d) Four lowest-order temporally coherent
modes, 0 i(t)-0'4(t), calculated as eigenfunctions of Eq. (4)
for the same conditions as the data in Fig. 1. Curves (e)-(h)
are the squares of the same four mode functions. The
Gaussian-shaped pump pulse, with duration (FWHM) 7 nsec,
is centered at t 0.

tion of the 6eld (at z L),
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where Eqs. (l) and (2) were used. Equation (3) can
easily be inverted, using the mode orthonormality to find

where m is the Stokes frequency and a; is the photon
creation operator for the "temporal mode" %';(t)
The functions +;(t) are taken to be orthonormal over a
time period [—T, T], where T is large enough that out-
side of this range the field amplitude is essentially zero.
A useful choice of the mode functions is found by requir-
ing that the modes be statistically uncorrelated, i.e.,

(2)

where n; is the quantum expectation value (ensemble
average) of the number of photons in mode +;(t). That
this condition uniquely determines the mode functions
can be seen by calculating the two-time correlation func-

G(r ~, r2)e, (r2)dh2-n, e, (r r ) . (4)

Equation (4) is an integral eigenvalue problem, and
G(t~, t2) is a Hilbert-Schmidt kernel; therefore the ei-
genvalues nj are real and the eigenfunctions +;(t) are
complete. The mode expansion (l) is called a Kar-
hunen-Loeve expansion, and is similar to that used in
classical coherence theory. ' It is important to realize
that the mode functions are independent of T, since we
are dealing with a pulsed excitation. This is in contrast
to the usual applications of the Karhunen-Loeve expan-
sion, where the mode functions depend on the size of the
interval used to define them.

The correlation function G(t|,t2) is evaluated explicit-
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ly from the one-dimensional quantum theory of SRS in
the linear-gain regime. ' Then Eq. (4) is solved numeri-
cally by converting the integral to a discrete sum over 80
points and using standard matrix-diagonalization tech-
niques. This number of points is sufficient to ensure con-
vergence in the sense that n80=0. The four eigenfunc-
tions with the largest eigenvalues ni are shown in Figs.
2(a)-2(d). The squares (intensities) of the eigenfunc-
tions are shown in Figs. 2(e)-2(h). The four largest ei-
genvalues are ni 4.71x10', n2 1.51x10', n3 5.15
x10",and n4- —1.85x10".

In order to determine the statistics of exciting various
temporal modes, note that the Stokes field has Gaussian
statistics, and so each a; is Gaussian, with zero mean
and variance 8;. This fact, along with the uncorrelated
property, Eq. (2), means that the a; are statistically in-
dependent. Thus the joint probability density for observ-
ing values of the (complex) mode amplitudes
ai, a2, a3, . . . 1s

J
P(a&, az, a3, . . . ) Q (mnj. ) 'exp( —

i aj i /ni), (5)
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where J 80 is the number of mode functions found in
the numerical solution of Eq. (4). Individual classical
realizations of Stokes pulses can be constructed by sum-
ming Eq. (1) with random coefficients aJ*. determined
numerically in accordance with Eq. (5). Several exam-
ples are shown in Figs. 3(a)-3(h). These are chosen
from an ensemble that is of similar size (—100) to the
experimental ensemble. The realizations are arranged in
the 6gure to best show their similarity with the corre-
sponding observed pulses in Fig. 1. The percentage of
pulses having one, two, three, or four peaks is roughly
consistent between the experimental and theoretical en-
sembles.

It is of interest to determine the probability P;(f) for a
given mode +; (r) to have at least a fraction fof the total
pulse energy on a given shot. This is obtained by in-
tegrating Eq. (5) over the domain in which i a; i~ f&J. i al i to give

' n,
' '[I/n, +I/(I f)a, ]-'—p f J J 6

IIk;,, (~, —rtk)

For example, we estimate the probability for mode +2(t)
to contain at least 75% of the pulse energy to be
P2(0.75) 0.017. This ts ln qualltatlvc agreement with
the observation that of 96 pulses observed, two looked
similar to Fig. 2(b). By comparison, the probability for
mode +i(r) to contain at least 75% of the energy is pre-
dicted to be Pi(0.75) 0.24, which is consistent with the
experimental observation of 21 out of 96 pulses looking
similar to that in Fig. 1(a). On the other hand, when the
H2 pressure is lowered to 50 atm, decreasing the Raman
linewidth I by a factor of 2, virtually all of the Stokes
pulses have a single peak, indicating that only the
lowest-order temporal mode is excited in this case. This,

I

0
p

-1

too, is consistent with our calculations.
It is important to note that mode %'2(t) [Fig. 2(b)] has

exactly the correct z phase shift needed to induce the
formation of a Raman soliton in free-space propaga-
tion. ' Thus, a rough estimate of the probability to
form spontaneously such a soliton is given by P2(f) from
Eq. (6) with f chosen as, say, 0.9. For the conditions of
the experiments of MacPherson, Swanson, and Carlsten
(rL, 20 nsec, I 1.7x10 rad/sec) with gL chosen as
30 to represent the scattering just before going into the
saturated regime, we find a value P2(0.9) 0.0037. This
is not inconsistent with the experimental observation of
roughly five strong spontaneous solitons (with greater
than 50% reversal of pump depletion) in every 1000
shots.

In conclusion, the present work shows the existence of
the temporal quantum Auctuations in the initiation re-
gime of SRS and gives an intuitively appealing manner
in which to view the formation of certain simple pulse
shapes, including that shape with x phase shift. This
phase shift is that which is required to form spontaneous-
ly the Raman soliton, as well as the phase wave in

Time (ns)

FIG. 3. Individual realizations of Stokes pulses obtained by
adding up temporal mode functions [four of which are shown
in Figs. 2(a)-2(d)], with random coefficients a;, having proba-
bility density given by Eq. (5). The realizations are arranged
to emphasize the similarity to the data in Fig. 1.
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superAuorescence. It is intriguing that such a simple,
smooth pulse as that in Fig. 2(b) can arise from the
linear amplification of white quantum noise associated
with spontaneous Raman scattering. The smoothing of
initial noise is also evident in superAuorescence' ' and
amplified spontaneous emission. '

The advantage of the coherent-temporal-modes
description over the numerical simulation approach com-
monly taken ' ' is in the greatly reduced number of
random variables involved in the former. In the simula-
tion approach the number of random variables required
is equal to the number of space-time points (perhaps
10000) used for integration of the equations of motion.
In the coherent-modes approach the number of random
variables required is equal to the number of significantly
excited modes (perhaps four or five when rl. —I/I ).
While the coherent-modes approach is valid only in the
linear (undepleted-pump) regime, significant insight into
nonlinear evolution can still be obtained by considering
the field generated in the linear regime to be the input
for the nonlinear regime of amplification. '
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