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We discuss the quantization of a four-dimensional model in which a massive Abelian vector field in-
teracts with chiral massless fermions. We show that, by introducing extra scalar fields, a renormalizable
unitary S matrix can be obtained in a suitably defined Hilbert space of physical states.
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In the last few years several attempts have been per-
formed in order to quantize, in a consistent way, theories
with dynamical fields coupled to genuine anomalous
currents.'™ In particular, as far as models in which
chiral fermions are coupled to a vector gauge field are
considered, the two-dimensional (one time and one space
dimension) case has been thoroughly investigated and
satisfactorily solved, due to the circumstance that the
fermionic determinant can be explicitly computed. 4

Two different approaches have been essentially fol-
lowed, one by Jackiw and Rajaraman? in which unitary
theory is eventually recovered in a particular gauge
choice provided that the parameter a regularizing the
fermionic determinant is larger than 1; the other based
on restoring gauge invariance by means of an integration
over the group parameter ¢ which plays the role of an in-
dependent dynamical field.> It should be noticed that
the two-dimensional case is special as the nonperturba-
tive procedure of bosonization directly provides the ex-
pected kinetic term for the ¢ field.

In the more realistic four-dimensional situation, the
fermionic determinant cannot obviously be explicitly
evaluated; moreover, the naive kinetic term 9,9 8*9 does
not possess the required canonical dimension. As a
consequence, the only viable approach could be based on
a perturbative expansion, which, however, in the mass-
less case of gauge theories seems hard to carry out owing
to the degeneracy of the Wess-Zumino action. !

A different four-dimensional model, which neverthe-
less possesses interesting features, is the massive Abelian
vector meson coupled to fermion fields. If the fermions
are Dirac spinors, it has been known for a long time that
the model is both unitary and renormalizable, thanks to
the conservation of the Dirac current. '

The nontrivial generalization we want to discuss is the
coupling with chiral spinors. In the latter case the fer-

mionic left current is no longer conserved at the quan-
tum level, owing to the occurrence of the chiral anoma-
ly.® Recent papers have appeared in which the anomaly
is seemingly compensated by means of the introduction
of a Wess-Zumino term;’ unfortunately all of those at-
tempts do not consider the possibility that radiative
corrections generate counterterms which jeopardize uni-
tarity, namely, that ghostlike degrees of freedom can be
generated by quantum corrections. The purpose of this
paper is to show that it is indeed possible to construct a
model in which all of the usual physical requirements are
fulfilled thanks to the introduction of a suitable set of
scalar fields.

We consider the chiral massive electrodynamics which
is described by the following classical Lagrangian

Lo=— ¢ Fu F*'+yg@+ieAP )y + s m24,4*, (1)
where P, = % (1+7s). The equations of motion are

0*F,,+m?d,=—J,;, (2a)

@+ieaP )y =0, (2b)

where J/ has the classical expression ieyy"PLy. Taking
the divergence of Eq. (2a), we find

m29,4"+9,J! =0. 3)

At the classical level the fermionic left current turns out
to be conserved thanks to Eq. (2b) and thereby the bo-
sonic degrees of freedom are transverse, i.e., 84, =0,
implying that the longitudinal field A4, is free.

As is well known, at the quantum level, the left
current is no longer conserved owing to the anomaly.
Therefore, A,l' is no longer free, but nevertheless Eq. (3),
with a suitable quantum definition of the left current, is
expected to hold. Actually, in order to quantize the vec-
tor field 4,, we shall impose Eq. (3) as a constraint, in a
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path-integral approach for instance, by means of a
Lagrange multiplier 5(x), by adding to .Lo the Lagrang-
ian

Ly=—m?28,bA*+b3,Jt. 4)
If we now consider the effective action
Wlad =N [ 0§Dy Dbexp i f (Lot Ld%), &)

the stationary solution

W _
5A,

0 (6)

corresponds to the vanishing of 0Ob in an average sense,
namely,

[ 0wy Dbobexp [if(£0+.£b)d4x =0. (T

The next step is to show that the condition (3) survives
after the quantization of the vector field A4, and thereby
the average b field still satisfies a free-field equation.

To this purpose we consider the functional

Wisl =N [ DA, D5 Dyexp (i [ Lot L)a%),  ®

and set A, =9,9, A,=A; +98,5. Then the Lagrangian
can be rewritten as

Lo+ Ly=L(A},7,9)+ 5T m*d,(b—9)]?
— 1m*(@,b)%+(b—0)3,Jt . 9

If we change the variable of integration ¢ as §==b —9,
we easily realize from Egs. (8) and (9) that the average
b field still satisfies a free equation. As a consequence
there is no source of interaction for b and the constraint
(3) continues to hold in an average sense

(m?9,A4*+8,Jt)=0. (10)

We conclude that it is stable under renormalization. On
the other hand, the field § obviously couples to A", via
the gauge anomaly

3
- e’ . =
.LJ’A.L-l?a”J"L"'Zs—”_Z!’F#VF”V. an

This coupling generates divergences at higher orders in
the loop expansion which require counterterms in the La-
grangian.

The most dangerous term contains the coupling of two
vertices

(TIF, (X)) F*"(x),F,. () F*°()1)
= (¢, m 0+ c,0%)5*(x — y) + finite terms,  (12)

¢ and c¢; being divergent dimensionless coefficients in
the limit w— 2, 2w being the space-time dimensions.
The required counterterms in this case would be

Lo=(Z1— 1)+ m?(8,5)2+2Z,@5)2. (13)

The presence of higher derivatives in the kinetic term en-
tails the appearance of a ghost in the spectrum of &.
This ghost is unavoidable and destroys the perturbative
unitarity; it just corresponds to an anomalous unitarity
breaking. We remark that this basic point has been
overlooked in previous treatments in similar contexts.

At this point it is worthwhile to notice that the
degrees-of-freedom content of the above model is, be-
sides the physical fields 4,5, v, ¥, a fully decoupled
ghost b and an interacting scalar §, which has good sig-
nature at the tree level [see Eq. (9)], but generates
through quantum corrections higher-derivative ghost
contributions of a particularly bad type. Our idea is to
forbid the occurrence of those quantum corrections by
means of the introduction of a suitable extra ghost scalar
field n with the Lagrangian

Ly=—+m?>(@3,m)>+nd.Jt . (14)

We remark that it couples to the anomaly with the same
coefficient as the longitudinal part of A4,. Therefore, if
we consider the Green’s functions of the transverse vec-
tor field, in which § and n may only appear in the inter-
mediate states, we immediately realize that their contri-
butions cancel since they couple with the same coefficient
but their propagators have opposite signs.

One can also understand this point in terms of the
variables A =J+n and ¢ =J — 5; in fact, the relevant La-
grangian as a function of those variables becomes

Lyo=57m?3*A8,0+18,JF . (15)

The path integration over ¢ and A gives, irrespective of
the order,

<exp [i f.Cw] >x,¢ ==(5(O\)), =const , (16)

namely, the dependence on the anomaly has completely
disappeared.

To prove the uritarity of the S matrix we follow the
Becchi-Rouet-Stora-Tyutin (BRST) procedure.® We add
to the Lagrangian a term involving a couple of Faddeev-
Popov ghosts

LFp_iaufa”C, (17)

¢,c being Hermitian Grassmann fields. A first symmetry
of the total Lagrangian Lo+ L, +.L,+ Lgp is realized
by the following transformation:

614,=d,c, &ib=c, &§ic=—im?b, (18)

with all the other variations vanishing. We remark that
one might also vary the fermion fields, but must take the
contribution of the measure into account.’ The corre-
sponding conserved BRST charge turns out to be

Ql"’fd3fm2:baoc:. (19)

We remark that Q) is not nilpotent of order two, but of

1555



VOLUME 63, NUMBER 15

PHYSICAL REVIEW LETTERS

9 OCTOBER 1989

order three, at variance with the usual gauge case.
The second invariance of the BRST type we consider
is provided by the transformation

S:b=c, Sn=—c, 6¢=im*(n—19), (20)

with all the other variations being zero. Actually this
variation leads to the invariance of the action and not of
the Lagrangian. The corresponding current

78(x) =m2(d*nc—8*cn+9,c0—9,9¢) Qn

is conserved and gives rise to the BRST charge

0= [ d*%m*(cdon+9d0c):, (22)

which is also nilpotent of order three.

We remark that the charges Q; and Q> forbid the ap-
pearance of divergent extra terms in the effective action
apart from arbitrary polynomials of the variable
A=3J+n times BRST-invariant combinations of canoni-
cal dimension four. Nevertheless, Eq. (16) survives the
presence of those counterterms and guarantees that A
still behaves like a free field. As a consequence, only the
restriction of the S matrix in a suitably defined physical
subspace is expected to be renormalizable, as we discuss
below.

Finally, we discuss the structure of the space of the
physical states in connection with the unitarity of the S
matrix. It is convenient to choose as independent fields
J, b, and 7, as they do not mix under propagation and, in
particular, b is a free field within this choice.

Of course we also have the charge Qg related to the
dilatation of the Faddeev-Popov fields, whose eigenvalues
are the “ghost numbers.” Then in the subspace with
zero ghost number, the condition

0, | phys) =0 (23)
is equivalent to imposing

b | phys) =0. (24)
As a second condition we require

Q> | phys) =0, (25)
which, together with Eq. (23), implies
(@1 —Q2) | phys) -fd3fm2:(z§+n)60c: | phys) =0.

(26)

If we now remember that §+7 is a free field [see Eq.
(16)], in the sector with the ghost number equal to zero,
Eq. (26) is equivalent to the condition

F+n) | phys) =0. 27)
We now assume, as usual, the completeness of asymptot-

ic in-out states. Equations (24) and (27) obviously be-
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come

b5 | phys) =0,
(28)
@S +057) | phys) =0

The nontrivial allowed physical states are therefore gen-
erated by the creation operators A,,fa(s” and 5;: )+n§S+ ),
remembering that J,5 and 7, have opposite commutation
relations.

All the states generated by A#fa(s*') are of positive norm
and correspond to the three physical polarizations of the
massive vector field. The other combination J§s+ )+n§s+ )
creates zero-norm states.

Those zero-norm states, although & and n are coupled
to the left current and thereby with the transverse vector
field, remain free due to the exact compensation mecha-
nism described earlier and expressed by Eq. (16). In
other words, if those states were present as initial states,
they could not actually create final transversal vectors
states.

We conclude that there exists a restriction of the S
matrix in the subspace defined by conditions (23) and
(25) which is unitary and block diagonal.

We remark that our Lagrangian (9) could also be ob-
tained by performing on the Lagrangian (1) a gauge
transformation and by interpreting the group parameter
as a new degree of freedom to be functionally integrated
over.’ The gauge fixing (4) should be chosen in this case
to be —m?29,b A*. As already described, this procedure
does not lead by itself to a consistent theory, but a new
field 7 must be introduced whose Lagrangian (14) is dic-
tated by the result of the group-integration method. It
might be an open interesting question whether this extra
term could be interpreted in a geometrical way.

We end by noticing that our treatment in the limit
m— 0 becomes meaningless as all the additional kinetic
Lagrangians disappear. As a consequence, the quantiza-
tion of a chiral gauge theory in four dimensions is still an
open challenge.
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