VOLUME 63, NUMBER 14

PHYSICAL REVIEW LETTERS

2 OCTOBER 1989

Superconductivity from Commensurate Flux Phases
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We use a renormalized mean-field theory of the 7-J model to show that flux states closely related to
those recently proposed by Anderson, Shastry, and Hristopoulos are stabilized, at values of J/¢ 2 1, when
the flux per plaquette is commensurate with the electron density in a way simlar to that found recently
for noninteracting electrons. These states (in the interacting z-J model) are characterized by a collective
gauge variable which leads to superconductivity. At not too small values of J/¢ the state with half a flux

quantum per plaquette is stable at low doping.

PACS numbers: 74.65.+n, 74.20.—z, 75.10.Jm

From the beginning of high-T. superconductivity,’
Anderson? has proposed that it was a property of strong-
ly correlated electrons on a square latice described by the
t-J model.> Mean-field theories on the quantum spin
liquid (QSL) of this model found a huge redundancy at
half filling (i.e., one electron per site) which was lifted to
give either a d-wave resonating-valence-bond (RVB)
state or a 3 -flux state when holes were introduced.*®
Anderson,® Wiegmann,” Laughlin,® and others® pro-
posed commensurate generalizations of the 3 -flux states
of Affleck and Marston* and Kotliar* away from half
filling. An explicit form was given recently by Anderson,
Shastry, and Hristopoulos.!? Very recently Hasegawa,
Lederer, Rice, and Wiegmann!! showed that the energy
of noninteracting spinless electrons had an absolute
minimum when the flux per plaquette, ® (in units of
hc/e), exactly equals the electron density, v, per site.

In this Letter we use a renormalized mean-field
theory'® to calculate the energy of commensurate flux
phases (CFP) and show they have special stability, at
values of J/t 2 1 [see Eq. (1) belowl. The dependence of
these states on the gauge degrees of freedom has in-
teresting consequences leading, as we will argue below,
to superconductivity.

The total energy of noninteracting spinless electrons is
shown in Fig. 1 versus the band filling v=14 —§ for
small values of 8, and for various values of ®, ®=yv,
®<v,and ®v. The energy at fixed v as a function of
® exhibits a cusp!! at ®=v. Near half filling, the ener-
gy increase of the state ®=v compared to the state
® =} is significantly smaller than the increase o 52 of
the &= phase (with a gain ~&2).

Consider the ¢-J model?

H=—t }_; Py(clejotcicic) Pa+ X, IS S;, (1)
(i,j),o €, j)

where ¢, creates an electron spin o at site i. The con-
straint of no doubly occupied site is ensured by the pro-
jector Py =TI;(1 —n;n;;). The parameters ¢ and J de-
scribe hopping and Heisenberg coupling between
nearest-neighbor sites. The lattice has L sites and

(1 —26)L electrons.
We examine as a possible ground state (GS)

| V)=P, I Vo) =P, 111511151& IO) . (2a)

A complete orthonormal set of operators Eff, is obtained
from the original basis operators ¢, by a unitary trans-
formation

&b =X yi(e)ed, (2b)
where {y;} are eigenstates of the tight-binding Hamil-
tonian '°

Hy=— ; [cxp(i¢,~j)c,-'{,cja+c.c.] . 3)
(i,j),o

Electrons on a lattice in a magnetic field with flux p/q
per plaquette have ¢;; =27z f/A-dl , where A is the vec-
tor potential. Hy is diagonalized in the reduced zone;
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FIG. 1. Total energy of the spinless free-electron gas under
magnetic field as a function of the deviation § from half filling
and for various linear relations between flux and filling
v=1% —6. The cusp in the upper curve occurs for a flux
@ =1 —v, equivalent to ®=v.
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where R labels a supercell and r; is within the supercell.
| e (k) |? is the weight of the state (k,o) on the site j
in the supercell and is deduced by solving the eigenstate
problem,

THIWa” k) =Ea™ k),
J

where
H,?(k) -— Zcxp{i[k' (R+l‘ij)+¢ij+]{]} .
R

The energy spectrum contains ¢ bands (labeled by n).
Because of the electromagnetic gauge invariance,

E(k,+2rnm/q,k,+2rn/q) =E(k.,k,) ,

so that each band is g-fold degenerate and L/q 2 momen-
ta are chosen in the reduced Brillouin zone of size
Qr/q)>.

The wave function (2a) is a spin singlet. Poilblanc'?
has pointed out that it is equivalent to the wave function
proposed in Ref. 10 and that it can be written in a QSL
form,

| Y)=pP, [Za(ri,rj)c,-’ﬁcﬁ ] N2 I 0,
iJj

where

This is formally similar to the GS introduced by Ander-
son for the QSL theory.?

Following Gutzwiller, we renormalize the expectation
values by a classical factor> to approximate the Py pro-
jectors,

(ci’;cjo)~g,<c,-§cj,)o s &t =45/(1 +26) s
(5)
(Si'Sj)~gJ(S,~'Sj)o, g_/-4/(1+25)2,

where (4) and (A4)o are expectation values in the state
| ) and | W), respectively, and 26 is the hole doping.
At half filling a d-wave projected BCS state containing
both particle-hole and particle-particle pairings is
equivalent to Affleck and Marston’s flux state with only
particle-hole pairing.* Furthermore, if the flux per pla-
quette is 3 (®=7) and if the gauge is defined by
| ;| =n/4 (Zagij= = n), the dimensionless quasiparti-
cle spectrum is E{*) = & 2(cosk2+cosk?) '/, and the
magnetic and kinetic energies are identical, within ap-
proximation (5), to the values —0.344J and
—2.71t/hole of the d-wave projected BCS state.®
Assuming that (1/2x) Xa¢;; =p/q is a rational num-
ber, we construct (2a) by filling (completely or partially)

ocC
a(r;,r;) =a(c;,r;) = )y ;).
n o ;W e | some of the lowest ¢ bands. The magnetic energy of the
singlet GS is

CH) = = 2 g7 3T (expligr 1+ Ieicin e olexD(= 8y 14l ~o6i oo ©®

Because of the singlet character of the state we could in-
troduce the same fictitious flux and gauge for 1 and |
spins corresponding to that used in |¥o) in (2a). Be-
cause of gauge invariance e

(ciLci+roexp(i¢i i+r))0-—g—EE£") (7)

4L nx

independent of i, o, and the direction to the nearest
neighbor i+ 7. The proof is as follows: First, (7) is
clearly gauge invariant since under U(1) transformations
the phases arising in the wave function are absorbed by
the change in exp(ig;;). If, for example, we choose the
Landau gauge along x and y with different origins, it is
clear that (7) should be translational and rotational in-
variant. The sum over occupied k states is performed in
the reduced Brillouin zone containing L/g? points and n
labels the filled bands. The sum (7) is over the energies
of the Hofstadter problem'® with flux p/q, up to the
Fermi energy. The gauge invariance of the Hofstadter
problem, i.e., the g-fold degeneracy of the bands, is re-
sponsible for the g prefactor in (7). Then, the exchange
and kinetic energies per site at any flux are easily shown
to be

2
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where ({cos¢;;)) is the average over all the bonds of
cosg;j. As expected, this depends on the gauge, being ¥
in the Landau gauge and O in the symmetric gauge, for
example. This is simply a consequence of the U(1)-
symmetry breaking of the kinetic term [c;;— cio
x exp(ia;)]. In this approach, the flux p/q is to be con-
sidered as a variational parameter as well as the gauge.
For half filling and half flux, with the gauge discussed
above, i.e., |¢;i| =n/4, ((cos¢,~j)>=1/w/5. Equation (8)
establishes for the first time a direct connection between
the GS energy of the correlated electron system at arbi-
trary fractional filling away from half filling and the to-
tal energy of the noninteracting spinless electron gas on a
lattice in a uniform magnetic field.!! The occurrence of
cusplike minima in Eo(®) =(g/L) T5E™ at ®=v has
interesting consequences, since it occurs in both energy
terms (H;) and (H,).

The stability of the CFP depends on the behavior of
K (®) =max{{cos¢;;)) with gauge as a function of the
flux ®=p/q. Optimization with respect to V& on
(cos(g;;+& —¢&;))) for a set of rational @ (Fig. 2)
shows an absolute maximum at ®=0 (X =1) and a local
maximum at ® =4 (K =1/v/2). Related studies'* sug-
gest that K(®) has cusps at rational ® but smaller cusps
should be smoothed out by various perturbations (e.g.,
lattice imperfections). (H,), for v=1 — & as a function
of ®, has a minimum for ® =0, very likely a local cusp-
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FIG. 2. Lower bounds of K(®=p/q) =max{{{cos¢;»}}. In
the infinite manifold of local gauges, periodic ¢;; gauges have
been chosen on a Vg x+/g supercell (solid circles) and a 2xg
supercell (open circles).

like minimum at +, and a kinklike singularity at ®=v.
(There is no computational evidence that this point
should correspond to an actual local minimum.) There-
fore, at fractional filling, the total energy (H,)+(H,) has
a cusplike minimum at ®=v, or at = L. if J/t is not
too small. Whether ® =v is an absolute minimum or not
depends on the balance between the exchange term,
which always favors ®=v, and the kinetic term which
favors ®=0 or L. At small & the competition between
®=v and ®=7% depends essentially on the ratio J/z.
The singularity of {{cos¢)) at ®= % if confirmed, pro-
vides a mechanism for the stability of the ® =% flux
phase on a finite range around & =0.

An important result we have obtained is that the CFP
®=vy=12 are more stable than ®=1 and ®=0 for
(J/t)1=1.07 and (J/t),=3.0, respectively (for the
CFP ®=v={; the corresponding J/t are 1.8 and 0.88).
Because of the uncertainty in the calculation of K, these
values are upper bounds and may be decreased by im-
provements on K. The critical value (J/t); for §— 0 is
~3&. Since (J/t), is increasing when §— 0, we expect a
plateau around v=%tat ®=1.1°

In fact, in our optimization of K it is favorable to
choose flux distributions where the total flux in a super-
cell is made of g —p plaquettes each with flux & (or

—®) and p plaquettes with flux ®—1 (or 1 —®). The
two choices are related by time-reversal symmetry. So
the total flux per supercell is zero.

Until now we have only discussed fictitious magnetic
fluxes. We now proceed to discuss the effect of real
external magnetic fields Hex on our GS. We argue that
the CFP phases are superconducting states and exhibit a
Meissner effect. Consider an external potential Ay
+VBext, Where Beyx: is any regular function, applied to the
CFP at ®=v. Again we consider ® as a variational pa-
rameter, the optimum value of which may depend Hey,.
(Hj) as a function of the fictitious ® in the wave function
(2a) is obviously unchanged. The kinetic term is
changed to

Eo(d>)((cos(¢,-j +¢;j+VBex +VE))),

where zp,-j-an{ Acxi-dl, and we have introduced the
gauge term V& of the fictitious field. Assuming that
K(®) is varying smoothly, then, due to the cusp in the
exchange term, the total energy is minimized at small
external field at ® =v, the same flux per plaquette as in
the absence of He,; (electromagnetic gauge invariance is
obviously fulfilled). So the total flux per supercell stays
zero and this gives a Meissner screening due to the rigi-
dity of the wave function.

(Hj) is invariant under a simultaneous gauge transfor-
mation on the t and | spin-wave functions but (H,) is
not. A wave function

I V)= exp [i Z So'(rj,o-j)] | v)
1,0
corresponds to a uniform current-carrying state in the x
direction when V.S, =g,. (H,) is modified to

J
(H, (Sa)> o E COos [¢'J+f Sodl] .
i,j),o ¢
If S, is a slowly varying function on the scale of the lat-
tice, we can expand around the optimum value of the
phase ¢;; and

(H(So) = H, )~ [(H) | T, [ (v8.)2dr.

However, only gauge changes which leave the singlet
character of the wave function unchanged are allowed so
St=S),. These states carry a uniform current cgq,.
Note that since the CFP have a spatially uniform charge,
and since the Hofstadter spectrum has a gap, then this
collective excitation will not be pinned nor will it decay
in a ring geometry except by a topological excitation.
Thus the CFP are capable of carrying a persistant
current.

Consider a slowly varying A so that VS,
— VS5 —2mAcx. To discuss flux quantization in a ring
geometry we must examine the boundary condition. If
we impose the London condition S,(r+L,) =S.(r)
+2mr (e, gx=2mn/L,), where L, is the ring cir-
cumference and m is an integer, then we find only the
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London flux quantization giving a flux quantum of hc/e.
However, other excited states are possible. Following
the discussion of de Gennes'® for a BCS superconductor,
we consider one-particle states with antiperiodic bound-
ary conditions on the ring and apply a gauge transforma-
tion with S,(r+L,)=S,(r)+(2m+1)x. This gives
fully periodic wave functions and leads us to the Onsager
flux quantum hAc/2e. In defining an order parameter the
requirement that it should be single valued around the
ring shows that the proper choice for its phase will be
S(r)=X,S,(r) =25(r). Substituting in | ¥s), we ar-
rive at a Ginzburg-Landau-type energy expansion

(H, (S, Aux)) —H, 0D & [ (VS —4nAc) 2dr .

This means that the GS has a broken electromagnetic
global gauge symmetry. The magnitude of the order pa-
rameter will be o« |(c;hcjo) |'/? (or < 8'2). This form of
the energy can be used to derive an Abrikosov theory of
type-II superconductivity.

In conclusion, we have estimated the energy of the
correlated electron gas on a lattice in the CFP represent-
ed by a Gutzwiller-projected determinant of Hofstadter
single-electron wave functions. We find that CFP at
® =y can be stabilized, in mean field, for reasonable &,
for values of J/t 2 1. We find that the total energy has a
cusp as a function of the flux per plaquette; this behavior
suggests that CFP are bona fide superconducting GS of
correlated electrons represented by the 7-J model. At in-
termediate values of J/t <1 the state with &=1 s
stable over a range of values of 8. The form of the
mean-field theory is unusual because of the cusp in the
energy. The corrections to the critical values of J/t for
CFP from possible additional terms in the Hamiltonian
and beyond mean field remains to be investigated.
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