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A theoretical analysis is presented of the current from a field-emission tip terminated by a single atom.
The calculations yield a relatively focused, high-current beam with a narrow energy distribution, in

agreement with recent experimental studies. The results are physically interpreted in terms of channel
filtering by an adiabatic constriction.

PACS numbers: 79.70.+q, 41.80.Dd, 61.16.Di, 73.40.Gk

We analyze here the microscopic aspects of field emis-
sion from a tip on which the primary emission source is a
single atom. The experimental background we consider
is the work of Fink' on such "point sources" for elec-
trons. Currents of a few microamps with 6elds of ~1
V/A were obtained from well-characterized tips in these
experiments, with emission into a very narrow beam.

Our model for this problem is one used earlier to study
aspects of current Bow in the scanning tunneling micro-
scope: two planar metallic electrodes with a bias be-
tween them, with an adsorbed atom kept 6xed at its
zero-field equilibrium distance on one of the electrodes.
These two electrodes, one (with the atom) representing
the tip and the other the screen, are separated in the cal-
culation not by the distances of the order of centimeters
typical in a field-emission experiment, but rather by a
large but still atomic-scale distance (we use 30 bohrs).
This, however, allows us to concentrate on the micro-
scopic aspects of the problem of interest here, and large-
ly avoid discussion of macroscopic effects in the experi-
ment such as field focusing.

As in our earlier studies on the scanning tunneling mi-

croscope, we will use the jellium model to represent the
metallic electrodes themselves. Our solution proceeds as
follows: First, within the framework of the density-
functional formalism, we find the single-particle wave
functions and self-consistent density distribution for the
pair of bare metallic electrodes, assuming them, for sim-
plicity, to be identical (r, 2 jellium model) in the pres-
ence of the bias voltage. This problem of the biased
bimetallic junction has been discussed by McCann and
Brown, and we follow in outline their procedure.

We next use the method of Lang and Williams to
find the self-consistent density distribution and single-
particle wave functions for the total system consisting of
the two bare electrodes plus the atom. It will be recalled
that this method was originally used to study an atom
adsorbed on a single bare metallic surface, and proceed-
ed by solving a Lippmann-Schwinger equation that in-
volved a Green's function for the bare metal. The only
significant difference here is that the Green's function is

that appropriate to the biased bimetallic junction, in-
stead of the single surface. The wave functions are then
used to obtain the current.

For bias V (de6ned here as positive), the current den-
sity at zero temperature is given by (using atomic units,
with [e [ It rrt 1)

~Pp

j(r) -2 dp Ime„(r)Ve'„(r),

where +„ is a current-carrying state with quantum label
p, which in our case represents energy e, azimuthal
quantum number m, and parallel momentum label x,
and fdp is an integration over energy and a sum or in-
tegration over the other state labels as well. The upper
limit of the energy integration is the tip-electrode Fermi
level (eP ), and since the only states that make a
significant contribution to the current are those not far in
energy below e~, we simply write the lower limit as

The factor of 2 is for spins, which we do not in-
clude in our label p. The state +„deep in the interior of
the tip electrode consists of a plane wave moving toward
the surface region plus reAected waves, and deep in the
interior of the screen electrode consists only of transmit-
ted waves.

We will be interested in the additional current density
due to the presence of the atom, bj(r) j(r) —jo, where

jo is the current density for the bimetallic junction in the
absence of the atom, and in the total additional current
BI, which can be obtained by integration of 6j over an
appropriate surface.

Now we will wish to plot a quantity such as BI against
the induced electric 6eld E (de6ned as positive) at the
surface of our tip. By induced electric 6eld we mean the
difference in field between the cases with and without an
applied bias. There will, in general, be a field in the vi-
cinity of the tip atom, even in the absence of an applied
bias, because under most circumstances such an atom,
even if it is adsorbed on a cluster of the same type of
atoms, will have a dipole moment. The "surface" of a
one-atom tip is not well defined, and so we must choose
the exact point in the vicinity of the atom at which to
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FIG. 2. Total energy distribution curve bI(e) for E =1.0
V/A (zero temperature) with Na tip atom.

FIG. 1. Current bI vs induced electric field E with Na tip
atom. Calculations were done for four field values (circles);
these results are connected with a smooth curve.

evaluate E. This point will of course be chosen on the
surface normal through the atomic nucleus. Now E as a
function of distance along this line will have a maximum,
since if we evaluate E at points close enough to the
center of the atom that they lie inside of the charge
cloud induced on the atom by the applied field, then only
part of the cloud will contribute to E, while at points far
outside this cloud, the value of E decreases as described
by classical electrostatics. We will therefore evaluate E
where it is a maximum.

Figure 1 shows the current 8I as a function of induced
electric field E. It is clear that for fields of the order of 1

V/A, the current is of the order of that seen in the exper-
iments of Fink. ' Figure 2 shows the (zero-tempera-
ture) total energy distribution curve bI(e) for E 1.0
V/A; it is quite narrow, with a full width at half max-
imum of 120 meV.

Figure 3 shows streamlines of bj(r) for E 1.3 V/A.
Streamlines in the immediate vicinity of the atom are not
shown. The outermost ones define a surface containing
half the current BI. The beam is seen to be fairly well
focused, the main reason for which is discussed below. A
subsidiary reason is that, in contrast to the usual experi-
mental configuration, the screen is relatively close.
That this is less important than the microscopic potential
configuration within the dashed box, which will be simi-
lar to that in the experiment, is illustrated by the fact
that a particular change in this configuration considered
below (creation of a deep channel just to the right of the
atom) is enough to cause the streamlines to spread out
like a fan, with a maximum opening angle of over 70 .

Far from the region of the tip atom, the total effec-
tive potential v, tr(r) (consisting of electrostatic plus
exchange-correlation parts) seen by the field-emitted
electrons is that of the bimetallic junction without the
atom (Fig. 4); in the region near the atom —that en-
closed by the dashed rectangle in Fig. 3—v,IT(r) has the
form shown in Fig. 5.
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FIG. 3. Streamlines of bj(r) for E 1.3 V/A and Na tip
atom. Left and right edges of the box correspond to positive
background edges of the two electrode surfaces. Coordinates p
and z are parallel and perpendicular to the surfaces, respective-
ly. The presence of the tip atom is indicated schematically by
solid circles with the cross at the position of the nucleus. The
outermost pair of streamlines encloses 2 BI. The potential v, ff

within the region enclosed by the dashed rectangle is shown in

Fig. 5 (1 bohr 0.529 A).

These maps give the contour v, IT(r) -t.F'P (this is the
solid one closest to the atom), as well as a number of
other contours for values both above t.F' and below E'F'

(dotted). Thus the areas filled with solid contours repre-
sent regions where an electron at the tip Fermi level en-
counters a potential barrier. (Recall from Fig. 2 that
most of the current comes from states near the tip Fermi
level. ) At lower fields, the electron leaving the tip en-
counters a potential barrier in all directions toward the
screen, but as the field is raised, a channel opens up
through the solid-contour region, leading to a hornlike
potential opening toward the screen.

The propagation of waves in adiabatic (slowly vary-
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FIG. 4. Surface potentia1 barrier v,z calculated for the jelli-
um model (r, 2 bohrs) of a bimetallic junction using the
local-density approximation for exchange and correlation (solid
curve), for 10-V bias. (This bias gives E 1.3 V/A when the
Na atom is present. ) Positive-background edges are at 0 and

30 bohrs. The dashed curve shows the effect of replacing the
local-density exchange-correlation potential between electrodes
with an image potential that saturates near surfaces —the
effect is not large.

ing) hornlike structures was recently treated by Glazman
et al. ' in the context of the conductance of a constric-
tion. For simplicity, we start with the case of a con-
stant potential floor in the horn. Imagine a ballistic
(disorder-free) two-dimensional electronic waveguide,
conining the electrons to the region iy i

~ d(z), yield-

ing a "horn" that is smooth on the scale of the electron
wavelength k 2n/k. This is obtained by taking d(z) to
be a function connecting smoothly to the metal electrode
at z z where d(z) d —,having a minimum do at zo,
and opening into the interelectrode space at zi where

d(z) d+. One now makes a Born-Oppenheimer-type
separation of the "slow" longitudinal variable z and the
"fast" one y. The y problem is just a hard-wall square
well having energies e'„(z) (h /2m) [nor/2d(z)] . As is
familiar from the usual separation, e„(z) plays the role
of an additional potential for the mode n. The adiabatic
separation of variables can be used also for more general
potentials. So long as the changes in these potentials are
smooth enough, we can still consider e„(z) to be an (n-
dependent) potential for the effectively one-dimensional
motion in the z direction, for the nth transverse mode.

An important aspect of the adiabatic picture is that
for a wave moving adiabatically along a guide, the mode
number n is conserved. An electron in mode n, whose

energy is above e„(zo), has a unit probability of arriving
at the right, where d d+, in the same mode, with no
scattering into different modes. Since e„(zo) increases
with n, the constriction will selectively transmit only
those modes with n ~ no, where no is the maximum n for
which e„(zo) & eF.

FIG. 5. Contour maps of v,& within the region defined by
the dashed rectangle in Fig. 3, for three values of E. The solid
contour closest to the atom in each case is that for u,e eP;
contours shown for other energy values are spaced by 4 eV,
starting at epr. Contours for values greater than or equal to
e+" are solid; those for values below eF' are dotted. The saddle
point is within the box for E -1.3 V/A.

Let us consider a horn which opens adiabatically up to
zi and then radiates into free space. " ' lf one places a
screen far away from the conined region (at a distance
L), the probability density one would measure will have
the form of the diffraction pattern of a wave emitted
from a slit of width 2di. The resulting wave on the
screen for mode n will be given by a convolution of the
diffraction pattern of a slit of width 2di with two 8
functions at y ~nnL/2d+k, . Thus the probability
density on the screen will have two humps located at
these values of y, each of a width of order ttL/d+k, .
Note that for n 1 these two humps will overlap and

only a single hump will be seen. The total angular
spread due to the diffraction of an electron from channel
n is therefore of order 8„, where

tan8„(n+ 1) dik,
2(n+1)

nmax
(2)

with n,„ the number of transverse states such that
e„(z~)~ eF. For the real case, where the potential de-
creases between the end of the channel and the screen,
this discussion is valid with H„being the angle and k the
wave number immediately after the horn. For this
mechanism to yield good focusing, it is necessary that
no«n, „. It can be seen from Eq. (2) that for no -n
i.e., when all the possible modes at d+ are populated, the
total beam opening will be large. It was found by Garcia
and co-workers' (see also Ref. 15) that this is indeed
the case. To get a narrow emitted beam, it is necessary
to have a selection of the modes so that no«n~, „. Such
a selection can be achieved by a pure constriction, by a
potential barrier in the channel, or by a combination of
both.

Consider the potential configuration formed at the tip
(Fig. 5). It can be seen that for a large range of field,
the potential must have a saddle point. Now consider,
e.g. , the right-hand map in Fig. 5. At the saddle point,
the depth of the confining potential well is minimal.
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Therefore, the wave function at this point substantially
penetrates the forbidden region and has a rather large
extension in transverse directions. For a very shallow
well at this point, the transverse momentum of this state
will be very small. If the changes in the potential are
smooth, the height of the saddle point together with the
shape of the well there determine the number of occu-
pied channels that will be transmitted by the constric-
tion. For example, for the right-hand map of Fig. 5, we

estimate that only n 1 can be transmitted. Approxi-
mating the transverse potential at the point of exit from
the horn by a parabola, the n 1 state would produce a
Gaussian beam whose width is given by tanet —(kyo)
instead of Eq. (2), where yo is the distance between the
classical turning points for the ground state. (For the
right-hand map of Fig. 5, yo-10 bohr '. )

We have done a calculation for the case in which the
constriction in the right-hand map of Fig. 5 was
deepened (to a uniform value equal to that of the bottom
of the tip-electrode conduction band). The saddle-point
structure was thus removed, and the beam then showed a
spread of over 70 (as noted earlier). Garcia and co-
workers' have shown that channel selection can be ob-
tained by tunneling through a potential barrier located
past the constriction. Our adiabatic selection mechanism
achieves this channel filtering while retaining large
transmission probabilities and effective conductances of
order e /xA [(12900 0) '] per channel for fields ~1
V/A. We believe that this mechanism is the one mainly
responsible for a beam that is both focused and can carry
a large current.
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