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Irregular Wave Functions of a Hydrogen Atom in a Uniform Magnetic Field
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We study the irregular wave functions of a highly excited hydrogen atom in a uniform magnetic field.
The "scarring" of wave functions by periodic orbits is quantitatively investigated. The shape of unper-
turbed scars is in good agreement with recent semiclassical predictions.

PACS numbers: 32.60.+i, 03.65.Sq, 05.45.+b

In quantum mechanics all information about the sys-
tem under consideration is contained in its Green s func-
tion G(r', r,E),

e„'(r')e„(r)
G r', r, E E —En

For integrable systems both the wave functions 4 „1and
the structure of the spectrum g„}are well understood
and conventional semiclassical methods approximate
their exact solutions rather well, at least for short de
Broglie wavelengths. Unfortunately, the appearance of
chaotic motion in nonintegrable systems prevents the ap-
plicability of these methods and our general knowledge
about quantum systems possessing classically chaotic dy-
namics is still fragmentary. Most of the progress
achieved concerns the structure of the eigenvalue spec-
tra, which have been studied in detail during the last few
years (for reviews see, e.g. , Refs. 1 and 2, and for the
particular problem of a hydrogen atom in a magnetic
field, Refs. 3 and 4). Our knowledge of generic proper-
ties of the associated wave functions is by far not as well
developed. Recently Bogomolny derived an expression
for the wave functions using the semiclassical expansion
of the Green's function in terms of classical trajectories
as derived by Gutzwiller. 6 In this theory the wave func-
tion consists of an average, which is given by the projec-
tion of the classical microcanonical distribution on the
coordinate space (the so-called "semiclassical eigenfunc-
tion hypothesis"7), and of strongly energy-dependent
contributions localized around the closed classical paths
(the so-called "scars" ). In this way he was able to ex-
plain many of the finer details observed in the highly ex-
cited eigenfunctions of the quantized stadium bil-
liard. ' ' In a recent paper Berry extended these ideas
to a phase-space approach. '

So far studies on wave functions of "realistic" ergodic
systems (smooth potentials) were only qualitative. " In
this Letter we report a quantitative approach to wave-
function scarring. The physical system under considera-
tion is the hydrogen atom in a uniform magnetic field,

which is known to be chaotic around the ionization
threshold.

The Hamiltonian of a hydrogen atom in a uniform
magnetic field B is given by (in atomic units) '

K ——+—y(x +y ).1 1 2 2 2

2 r 8
(2)

The z axis is chosen as the direction of the magnetic field
B, which is measured in units of 80 2.35&&105 T,
8 y80. Because of scaling properties the classical dy-
namics depend only on the scaled energy e, which is a
combination of the energy E and the Geld strength y,
e Ey 1. Here we will study the Hamiltonian (2) in
semiparabolic coordinates (p, v, p), which (after separat-
ing the p motion) transform (2) into

it- " " —e(p, '+v')+ -,
' (p'v'+v'p')—=2.

2
(3)

Analogous transformations can be applied to the
Schrodinger equation, which for constant scaled energy e
reads

ly 1'5 —2e(p + v )+ —,
' (p v +it v ) —2]e-0. (4)

I„"-„e„'(v,p)(v'+p') voids. (5)

The integrand is chosen such that integration over coor-
dinate space yields unity (wave-function normalization).

In Eq. (4) y'1 replaces the role of 6. Thus by fixing the
scaled energy e we can study the semiclassical limit
h ~ 0 by decreasing the field strength y. We then quan-
tize the field strengths y'1, or equivalently A. This situ-
ation is also realized in recent experiments. '

We will study highly excited wave functions for
—0.2, where most of the phase space is chaotic

(-90% ). Before we discuss the structure of individual
irregular wave functions we will introduce and discuss a
quantitative measure for scarring. For each wave func-
tion +„(r)and for each diff'erent periodic orbit r we
define a scar strength I„'in the following way:
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FIG. 1. Distribution of scar strengths as defined by Eq. (5)
for the first 600 eigenstates in the m" 0+ subspace and for
the orbit +. The smoothed curve is obtained by a Gaussian
smoothing and is enhanced by a factor of 2. An 6 ' depen-
dence is indicated by the bars.

The actual integral (5) is performed along the path y of
the periodic orbit r, where ds (dv +dp )'
though one may have some objections against the pro-
posed definition (5) (for example, it does not care about
the wave function in the vicinity of the periodic orbit), it
is obviously a measure of the scarring strength: If the
wave function has an accumulation of probability density
along the periodic orbit r, the value I„'will be large.
(Recall that no definition of a scar measure exists so
far. )

The distribution of the scar strengths for the 6rst 600
eigenfunctions in the m 0+ subspace are shown in Fig.
1 for the orbit which we label with the symbolic code
"+."' It is the most simple unstable periodic orbit of
the system with a (symmetry reduced) stability exponent
of A, 0.8683. The shape of the orbit will be shown

I ~ s ~ 1 ~ ~ ~ ~ I ~ a a ~ I ~ ~ I ~ I ~ ~ I ~ I ~ ~ ~ ~ l ~ ~ ~ ~0
5 10 15 20 25 30 35 40
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FIG. 2. As Fig. 1, but for the orbit ++ —.

below in connection with individual wave functions. The
abscissa of the coordinates in Fig. 1 is inversely propor-
tional to A. Apart from the "erratic" pattern of the indi-
vidual scar strengths, an overall decrease of them is obvi-

ously noticeable. In fact, the average scar strength de-
creases proportionally to f't, in the same way as the level
density increases. This is shown by the smooth curve in
the figure, which represents a Gaussian smoothing of the
distribution: The average distribution is more or less
constant. In addition, however, the smoothed distribu-
tion is modulated and these oscillations are caused by the
periodic orbit involved. The frequency, e.g. , is given by
the inverse of the scaled action S~, which for this orbit
is S+/2x 0.6173. The oscillations have a maximum,
where the orbit is "quantized, " that is S(y)

y
' S+ 2xh(n+ ~ a+). The Morse index a+ is re-

lated to the number of conjugate and focal points of the
orbit and is a+ -2 in this case.

For a more quantitative analysis we compare our re-
sults with Bogomolny's semiclassical expression for the
wave functions:

& ( q (r) (') -po+ i' '/'+1m&A„(x) exp[iS„/irt+iy'W„(x)/2h]), (6)

where for each periodic trajectory r the x coordinate is
chosen along the orbit and the y coordinate is chosen
perpendicular to it. & ) denotes averaging over small
intervals of energy and con6guration space. The mean
value of the wave function, po, is modulated by the oscil-
lating terms arising from the periodic orbits r. S„arethe
actions of the orbits, and A, and 8' can be expressed
through the elements of the orbit's stability matrix (for
details see Ref. 5). Our definition of the scar strength
(5) investigates the wave functions on the periodic orbit,
that is y=O. From Eq. (6) we see that these contribu-
tions and hence the oscillations in the scar strength dis-
tribution should vanish in the semiclassical limit as A,

'

A closer inspection of the oscillations shown in Fig. 1

indeed gives a decrease of the amplitudes compatible
with an h ' dependence. Thus scarring as the collective
eN'ect shown in Fig. 1 disappears in the semiclassical
limit. This does not exclude, however, that some indivi-
dual wave functions can be strongly scarred. As can be

I
seen in Fig. 1 the scar strengths fluctuate wildly and
some particular eigenfunctions have a much larger scar
strength than the average. A mechanism for scar en-
hancement is discussed in connection with Fig. 2.

Figure 2 shows the smoothed scar strength distribution
for the orbit which we will label "++—"and which is
shown in Fig. 3(a). Again, the overall amplitudes of the
oscillations become smaller with h„,but more important
is the observation of a pronounced beat structure. This
beat structure is related to the existence of a further
periodic orbit (labeled ++ ——), which has a similar
scaled action and lies close to the orbit ++ —;see Fig.
3(b). The actual actions are S~+-/2x 1.48647 and
S++ — /2n 1.56462. The contributions of these orbits
can interfere because the orbits scar the wave functions
with the finite width = [i'/~ W(x)

~
] '/ perpendicular to

the trajectories; see Eq. (6). Thus there is a spatial
overlap of their contributions, which then interfere con-
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F&G. 3. Shape of the orbits (a) ++ —and (b) ++ ——
together with the boundary of the classical allowed region
(thick lines). The Liapunov exponents for the orbits are

2.4515 and X++ —— 2.3322.

structively or destructively. This explanation is in agree-
ment with the results shown in Fig. 2. The fundamental
frequency is 1/1.49, which agrees with the action of the
orbit involved, whereas the beat frequency is 1/0.08
which is consistent with the diff'erence in the actions of
the two orbits. A more detailed analysis of the frequen-
cies involved is obtained by the Fourier transform of the
scar strength distribution, which reveals only two pro-
nounced peaks located at 1.49 and 1.57.

How much can be seen of these scars in individual
wave functions? In Eq. (6) the wave function is aver-
aged over small regions of energy (hence involving an
average over several wave functions) and over coordinate
space. The energy averaging is necessary to eliminate
the contributions of the very long periodic orbits. Be-
cause of their exponential proliferation in chaotic sys-
tems they would give a divergent contribution. ' Howev-
er, it has been shown that energy averaging is unneces-
sary when the sum over periodic orbits is used as an
asymptotic series. ' Consequently the most simple orbits
should show up first in scarring the wave functions. The
spatial smoothing is necessary to eliminate the contribu-
tions of nonperiodic but recurrent trajectories. A trajec-
tory is recurrent when it starts at some point r and comes
back to this point with a different momentum. Most of
the recurrent orbits live in the neighborhood of a period-
ic one with a comparable action, and these contributions
are included via the harmonic approximation (6). Par-
ticularly when the system has discrete symmetries there
are, however, recurrent trajectories which do not live
near such periodic orbits, and which give additional con-
tributions to individual eigenfunctions. Hence we expect
a rather complicated pattern for individual wave func-
tions, which, in general, cannot be explained by one sin-
gle contribution of a particular periodic orbit. And in
fact, we only found exceptionally wave functions which
are dominantly scarred by a single orbit. Most of the
wave functions are rather complicated and must be inter-
preted as a superposition of several contributions. In ad-
dition, there is spatial interference between the diff'erent
contributions, which in most cases makes it very hard to
identify them at all.

FIG. 4. Wave function of the 116th excited state. The wave
function is scarred by the periodic orbit +, which is shown as a
solid line. The self-focal points of the orbit are indicated.

Figure 4 shows an intensity plot of the 116th excited
state in the m 0+ subspace, which is dominantly
scarred by the single periodic orbit + drawn as a solid
line. The quantized field strength divided by the scaled
action of the orbit gives 10.576, which is close to the
"quantization" condition 10.5 obtained by counting in
the fundamental domain the nodal excitations along the
orbit. Because the scar is nearly unperturbed we can
study some of its finer details: Depending on the relative
signs of the terms occurring in the exponential, Eq. (6)
predicts different structures of the scar perpendicular to
the orbit (y~0). The maxima of the scar are either on
the orbit or symmetrically next to it ("bridge" struc-
ture). The relative signs of the terms change at the
self-focal points, where a certain stability matrix element
vanishes. The self-focal points of the periodic orbit are
indicated in the figure. Indeed, the structure of the scar
changes from localization on the orbit to a bridge struc-
ture nearby (and vice versa) after passing a self-
conjugate point.

Other examples of scarred wave functions are shown

FIG. 5. Wave functions of the (a) 107th and (b) 115th ex-
cited states. The scarring periodic orbit ++ —is drawn in
(b).
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in Fig. 5, where we plotted the 107th and 115th excited
states. Both wave functions are very similar and are
scarred by the same orbit + + —.Again the bridge
structure between the self-focal points is visible. The
quantized actions of the periodic orbit for both wave
functions differ by one unit or one nodal excitation (the
exact difference is 1.0006). However, the wave functions
also have significant contributions from the orbit
+ + ——,which may explain some details near the end-
caps of the potential. The additional contributions from
the orbit ++ ——become obvious in connection with
Fig. 2: The eigenvalue of the 115th state is

y
' 7.1201, which corresponds to a maximum in the

interference beat structure as discussed above.
In summary, we have studied the highly excited irreg-

ular wave functions of a hydrogen atom in a uniform
magnetic field. Our results confirm that the contribu-
tions of closed classical orbits to the spatial wave func-
tions vanish in the semiclassical limit. However, the
disappearance is rather slow. A numerical example illus-
trates this: To decrease the scarring strength of an orbit
at the nth eigenfunction by 1 order in magnitude one has
to investigate the 10 x n excited level in a two-
dimensional system. In addition, interference between
contributions arising from different orbits can lead to an
enhancement (or disappearance) of particular scars. For
(unperturbed) scars 6ne structures in the wave functions
are in good agreement with a recent theory of Bogomol-
ny.
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