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Defects, Vortices, and Critical Current in Josephson-Junction Arrays
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The breakdown phenomena of a resistively shunted two-dimensional Josephson-junction array with a
single defect driven by an external current at zero temperature are studied numerically. The nonlinear
Josephson relation causes the formation of vortices at the tips of the defect at i„and thus lowers the
current enhancement there. Above a higher critical current i, the vortices depin from the defect and
march across the sample producing a voltage. The critical current i, is studied versus defect size. Vari-
ous dynamical properties and the I-V characteristics of the array are explained in the context of vortex
motion. From the observed features the critical behavior of a randomly disordered array is predicted.

PACS numbers: 74.60.Jg, 05.60.+w, 74.70.Mq

Breakdown phenomena in various inhomogeneous sys-
tems have been studied extensively over the past four
years. ' The effects of the most critical defects turn out
to be very important in understanding the breakdown
process. Recently, Leath and Tang have studied the
critical current in an inhomogeneous superconducting
system by looking into the current distributions in both
the normal and superconducting regions utilizing the
linearized Ginzburg-Landau equations. These linearized
equations and the boundary conditions turn out to be
similar to those of the random-resistor network problem.
While the linearized problem is easier to analyze, the
nonlinear effects turn out to be essential in accounting
for the appearance of vortices (topological excitations)
and their dissipation and therefore the breakdown of the
superconducting weak-link system. In this Letter we re-
port results of studying the breakdown process in super-
conducting weak-link systems with a simple defect by us-

ing resistively shunted Josephson-junction arrays. We
study numerically the role of a single critical defect of
varying size in the resistively shunted junction array and
the dynamical properties of the vortices caused by the
defect in the system, and use this to predict the behavior
of randomly disordered arrays. The presence of the de-
fect causes drastically different behavior from that previ-

ously reported by authors of numerical ' and experimen-
tal studies of perfect arrays.

The system we studied is one in which superconduct-
ing grains are uniformly distributed in two dimensions to
form the sites of a square lattice. Within our approxi-
mation each grain (site) is described by a complex super-
conducting order parameter 6, doe'", where Ao is con-
stant for all grains and y varies from grain to grain.
Each grain is coupled to its nearest-neighboring grains
by the resistively shunted junctions (bonds). Figure 1(a)
shows a small 4x5 array. Each junction, as illustrated
in Fig. 1(b), consists of a resistor and a microbridge in

parallel. Here the charging effect, which is responsible
for the hysteresis of the junctions, has been neglected;
this approximation is valid for proximity-effect junc-
tions. The current-conservation rule for a single junc-

tion gives
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which can be written in the generalized matrix form
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where the summation is over nearest-neighbor sites and
iI,
'"' is the normalized externally applied current at site k.

External currents are only supplied or withdrawn from
the top and bottom rows. The set of equations (2) or (3)
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FIG. 1. (a) A 5&4 junction array with a single defect (sin-
gle missing junction). (b) Each resistively shunted junction
consists of a microbridge and a resistor in parallel.

where Io is the maximum supercurrent that can Aow in
the junction between grains 1 and 2 and p& and p2 are
the phases of the respective grains; R and I~2 are the
normal resistance and total current Aowing between the
two grains. On the left-hand side of Eq. (1), the first
term is the well-known Josephson current and the
second term is the normal current due to the voltage
caused by the changing phases between grains. After
defining z-2eRIot/h and i'"'=I' //Io, the dimension-
less phase equation of the kth grain of an array with
identical junctions is given by
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for each site is then solved by multiplying Eq. (3) by the
matrix integration factor G and integrating numeri-
cally by using a fourth-order Runge-Kutta integration
scheme with appropriate initial phases p;(0). This tech-
nique which was used by Chung, Lee, and Stroud is
equivalent to that used by Shenoy and by Mon and
Teitel for perfect arrays.

In the case of a perfect array of identical junctions
with uniform initial conditions for Eq. (2), the array
behaves like a giant single junction. ' That is, for the
external current i less than i, 1, there is no voltage
across the sample; for i greater than i, the phase
difference across any junction behaves like a staircase of
steps versus time with a regular period" between steps,
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The time-averaged voltage over several periods is given
by" V NR(i —i, ) ', where N is the number of junc-
tions in the vertical direction. As the external current
becomes very large the I Vcurv-e shows the Ohmic be-
havior of an array of normal resistors.

The situation is substantially different when there are
defects present. To study this effect we introduce a hor-
izontal defect or slit by taking one or several adjacent
vertical junctions out of the center of the uniform array
[Fig. 1(a)]. The current thus has to flow around the de-
fect and therefore the current density near the defect tip
is enhanced. When the external current is below the
critical current of the sample the phases of the grains are
constant in time although inhomogeneous in space and
all the currents are in the form of supercurrents and thus
there is no voltage across the sample. When the current
is small the supercurrent distribution is approximated by
a dipole distribution as in the linearized problems. Be-
cause of the current enhancement at the tip of the defect,
the junction closest to the defect will reach its maximum
current io 1.0 first. We define i, to be the applied
current for which the supercurrent in the most critical
junction(s) (i.e., those carrying the most supercurrent,
which in this case are those at each end of the defect)
reaches io 1.0. As the external current is increased
above i, we find that the system does not show any dissi-

pation but rather the current is redistributed by the for-
mation of a vortex (or antivortex) attached to each end
of the defect. The formation of vortices at each end of
the defect is the result of the coherence and nonlinearity
present in this model. This feature was absent in the
previous model studied by Leath and Tang and oth-
ers. ' The physical consequence of the vortex formation
is that the vortex current tends to cancel the super-
current in the junction closest to the defect and to add to
the current in the junctions further out. This makes the
current distribution near the defect more Bat as current
is shared with the further neighbors. In Fig. 2 we show

the supercurrent distribution, versus position away from
the defect tip along the axis of the defect, both below

FIG. 2. The supercurrent i/io in the vertical junctions in the
centraI row vs distance r from the tip of the defect.

and above i, for a 35&16 junction array with defect
length A 10a, where a is the lattice spacing.

Once the pinned vortices are formed at the tips of the
defect they will experience a Lorentz force FL, cs: Jpo/c,
perpendicular to the external current, where po is the
vortex quantum which is 2x in this case and J is the
external current density at the center of the vortices. '

When the external current reaches i, the Lorentz force
on the vortex equals the pinning force and the vortex
breaks free and starts to move under the influence of the
Lorentz force and thus through dy/dr to produce a volt-

age across the sample. Therefore i, is the critical
current at which a voltage first appears. Of course the
vortex and antivortex move away from each other in the
directions perpendicular to the transport current. In Fig.
3 we plot the magnitudes of the horizontal component of
the supercurrent versus lattice position at different times
for junction arrays with periodic boundary conditions in

the horizontal direction. The length of the defect is 10a;
the width is a (one lattice spacing). Figures 3(a)-3(e)
are snapshots of a 35x34 array at different times (in
units of r) with external current i -0.50)i, 0.472.
One can see clearly the periodic creation and motion of
the vortices (because of the horizontal periodic boundary
conditions the vortex and antivortex actually annihilate
each other at the boundaries). In the present problem
the external current is kept steady and therefore there
are constant creation and depinning of the moving vor-
tices with a period T which determines the spacing be-
tween moving vortices. The rate of phase change, dy/dr,
monitored here at a site in the top row of the array, os-
cillates periodically corresponding to the periodic motion
of the vortices in the central row. Since the voltage is,
by definition, proportional to the time average of the
phase change over a period, it is inversely proportional to
the period T. We find that period T T~(i i,)—
similarly to Eq. (4), for i above and sufficiently close to
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FIO. 4. ~ ~(a) Critical current i,/io plotted vs defect size A/a
on a logarithmic scale. (b) I-V curve of a junction array with a
single defect of length 10a (nine missing junctions).
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FIG. 3. (a)-(e) Snapshots of vortex movement in a 35x34
array at i &i, at different times indicated by r After .(e) the
picture returns to (a) and repeats the (a)-(e) process
indefinitely. (f) A snapshot at i &i,i when vortices appear in
the adjacent rows immediately below and above the central
row in a 35x 16 array. A series of snapshots here would have
sho~n the horizontal movement of these vortices as we11.

i„and Tg depends on the size of the defect. As indicat-
ed from the numerical simulation, when the current is
above and close to the critical current i, the core of the
vortex is just one lattice plaquette and thus the movinoving
vortices produce a voltage drop over each junction in the
central row. In Fig. 4(a) we plot the logarithm of the
critical current i, versus the logarithm of the defect size
A for different system sizes. A straight line with slope of

is also drawn. The physical origin of the straight
line will be discussed in the next paragraph. One can see
that the data points approach the straight line as the

sample size becomes larger and larger. The deviation
seems to be due to the boundaries of the sample. This
behavior is important for predicting the critical behavior
of disordered arrays.

To obtain the scaling relation between i, and A [the
straight line in Fig. 4(a)] one must first estimate the pin-
ning force on the vortex due to the defect and the an-
tivortex at the other end. The interaction between vortex
and antivortex will be small, when compared with the de-
fect pinning energy if the defect is sufficiently long, and
normally can be neglected. Although it is extremely
difficult to calculate the pinning force for a vortex out-
side a rectangular defect, it is reasonable to assume that
the
1

e pinning force is more or less a constant when th
ength of a long thin defect is changed while the

en e

geometry at the end of the defect, near which the vortex
is bound, is kept the same. The current enhancement at
the tip of the defect, however, is very sensitive to the
change of the defect length because the external current
must Aow around the defect. For a long defect i, tends
to zero and the Poisson equation can be used to estimate
the current enhancement at the defect tip. The current
at the tip is given by iiip i [1+(A/2d)' ] for A»d
where i is the external current at the boundary. Using
the fact that at i, the Lorentz force equals the pinning
force which is approximately a constant, we have

i, i~ const/[1+(A/2d) ' ]—A (5)

for A)&d. This scaling relation is the same as that of
the random-resistor problem.

%'hen the external current is increased further we ob-
served that the adjacent rows of junctions immediately
below and above the central row develop voltages and as
a result the I-V curve jumps abruptly at i, 3 [see Fig.
4(b)]. This abrupt jump in the I-V curve is simply due
to the creation and motion of additional vortices in the
adjacent rows. These additional vortices are seen, in Fig.
3(f), near the ends of the defect at i =0.7065 & i, 3
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0.7045 on a 35 &16 array. The junctions in the central
row near the defect carried the most current and hence
the central row was the 6rst to develop voltages (or
break down). The next most critical junctions lie im-
mediately above and below in the adjacent rows and
hence the creation of additional vortices here cause these
rows to break down next. So at current i, 3 the vortices
in the adjacent rows begin to move and produce addi-
tional voltages in the sample. In the cases where the vor-
tices are formed and depinned at different frequencies in
the three rows, we find that dy/dz, monitored at the top
of the system, will have a different and complicated os-
cillating pattern at each different external current i A.t i
very close to i, 3, dy/dz will have an oscillating pattern
which switches intermittently in time; i.e., a plot of
dy/dz shows a train of periodic oscillations which is dis-
rupted by chaotic-appearing intervals. Such oscillating
patterns occur because the periodic oscillations due to
the vortex motion in the central row are superimposed
with the oscillations of the vortex motion in the adjacent
rows. The fact that the burst appears to be chaotic in-
stead of periodic is due to the interaction between the
vortices in different rows. As the external current i is in-
creased further the periods of the vortex motion in the
adjacent rows become shorter. The oscillating patterns
at larger values of current i are periodic if T~/T2 is a
simple rational number, quasiperiodic if T &/T2 is close to
a simple rational number, and chaotic otherwise. T~ and
T2 are the periods of vortex motion in the central and
adjacent rows, respectively. Presumably there are simi-
lar and smaller jumps in the I-V curve as additional rows
produce vortices and voltage drops but we could not
resolve these features although we did observe at higher
currents that additional rows develop voltages before the
whole system breaks down.

From previous studies' it is known that the critical
behavior of an array with random defects is determined

by the distribution and behavior of the most critical de-
fects. The behavior of the most critical defects can be
determined by studying them one at a time as we have
done here. Because the scaling relation between the crit-
ical current and defect size in the present problem is like
that. of the linearized problems for a single defect, it is
clear that the breakdown current I& of real randomly
disordered superconducting arrays will vanish logarith-
mically versus system size L, and it is given by

I /L ca 1/[1+K(lnL ) l,
where K is a defect-concentration-dependent constant
and, from the data in Fig. 2, a 2. Indeed, we expect
this behavior versus sample size to apply to supercon-
ducting materials with naturally occurring defects.

In summary we have studied the effect of defects in a

resistively shunted Josephson-junction array numerically
in the context of breakdown phenomena at zero tempera-
ture and zero magnetic Geld. We have found that a sin-
gle defect serves as a nucleation center for the vortices
whose motions give rise to the dissipation of the system.
The scaling relation between the critical current i, and
the defect size A is similar to that of the random-resistor
problem for a long defect and hence the critical current
is predicted to behave similarly to the breakdown thresh-
old for linear electrical and mechanical breakdown prob-
lems. Although we have only studied arrays with single
defects we expect the result to have implications for ar-
rays with Gnite concentrations of random defects.
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