Determination of the Structure of Hydrogen on a $W(211)$ Surface

O. Grizzi, M. Shi, H. Bu, and J. W. Rabalais

Department of Chemistry, University of Houston, Houston, Texas 77204-5641

R. R. Rye

Division 1124, Sandia National Laboratory, Albuquerque, New Mexico 87185

P. Nordlander^(a)

Department of Physics and Astronomy, Rutgers University, P.O. Box 849, Piscataway, New Jersey 08855-8549 (Received 8 May 1989)

Time-of-flight scattering and recoiling spectrometry is applied to structural analysis of hydrogen on a W(211) surface. Experimental data in the form of a recoiling structural contour map are presented and the hydrogen position is determined as 0.58 ± 0.20 Å above the first-layer W plane and confined within a e the $[1\overline{1}\overline{1}]$ troughs. Effective-medium-theory calculations predict a broad probability distribution for the H-atom positions above the troughs due to thermally al motion.

PACS numbers: 68.35.Bs, 79.20.Nc, 82.65.My

Although hydrogen/metal systems have been extensively studied, there have been few studies of the binding geometry of hydrogen on metals. The technique of electron-energy-loss spectroscopy (EELS) has been the most successful in determining hydrogen binding sites.^{1,2} The conventional technique for studying adsorbate binding sites, low-energy electron diffraction (LEED), has low sensitivity for hydrogen. Recently, $3,4$ time-of-flight scattering and recoiling spectrometry (TOF-SARS) has been shown to be extremely sensitive to surface hydrogen and to have the potential for obtaining structural information.

This paper describes TOF-SARS and applies it to the elusive problem of the determination of adsorbed hydrogen structure, specifically hydrogen on $W(211)$. The data used in the analysis are TOF spectra of hydrogen (neutral plus ion) recoiling intensities I_R stimulated by $Ne⁺$ and $Ar⁺$ projectiles, coupled with classical iontrajectory simulations. The experimental H binding site is compared with theoretical calculations using the $\frac{1}{2}$ $\frac{1}{2}$ effective-medium theory (EMT).⁵

TOF-SARS is based on the classical behavior^{4,6} of atomic collisions in the keV range where atoms scatter and recoil from the repulsive potentials of atomic cores, i.e., the nucleus plus core electrons. As a projectile ion approaches a target atom, the trajectories are bent such that an excluded volume, i.e., a *shadow cone*, in the and recoil from the repulsive potentials of atomic cores, i.e., the nucleus plus core electrons. As a projectile ion approaches a target atom, the trajectories are bent such that an excluded volume, i.e., a *shadow cone*, shape of a paraboloid is formed behind the target atom. The deflected trajectories are focused (Fig. 1) at the edge of these shadow cones, whose radii are of the order of \sim 1 Å, making the technique sensitive to the outermost atomic layers of a surface.

Light adsorbates can be sensitively detected by recoiling them into a forward angle ϕ . As the beam-surface incident angle α increases, a critical value, α_c , is reached where the adsorbate atoms move out of their neighboring

atom shadow cones so that direct collisions with incident ions are possible.⁷ Two types of events, *direct recoils* (DR) and surface recoils (SR), are possible as shown in Fig. 1. DR events occur when the value of the impact parameter (p) below the adsorbate atom is accessible for single-collision recoil into a specific ϕ . SR events occur when neighboring atoms focus the projectiles at a p value above the adsorbate atom such that it is recoiled down

F1G. 1. Trajectory simulations of direct recoil (DR) and surface recoil (SR) of H atoms by 2-keV Ne⁺ ions illustrating (a) DR and focusing by W atoms, (b) DR and focusing by H atoms, and (c) SR and focusing by W atoms. Ne⁺ trajectories atoms, and (c) SR and focusing by W atoms. Ne⁺ trajectories benetrate into the H "cone" in (b) and are concentrated at the "cone edge," resulting in a spread of $\Delta p = 0.09$ Å in p.

onto the substrate lattice and subsequently scatters into ϕ . Focusing at the shadow cone edges produces sharp well-defined peaks in I_R as a function of α . Rotating the crystal about its azimuthal angle δ , i.e., about the surface normal, aligns the ion beam with other azimuths with different interatomic spacings, resulting in different α_c values. By measuring α_c corresponding to the recoil event, the interatomic distance of the adsorbate atom from its nearest neighbor along the trajectory can be determined from p and the shape of the shadow cone, i.e., the radius (R) as a function of distance (L) behind the target atom. The interatomic spacings between the adsorbate atom and first- and second-layer atoms can then be directly determined⁶ from simple geometry.

The recoiled atoms can be identified by their TOF at fixed ϕ due to their high, discrete velocity distributions which are well described⁴ by classical mechanics. For an incident ion of mass M_1 and energy E_0 , the TOF of a target atom of mass M_2 that undergoes DR into an angle ϕ is

$$
t_{\rm DR} = l(M_1 + M_2)/(8M_1E_0)^{1/2}\cos\phi\,,\tag{1}
$$

where l is the flight distance. A continuous-angle TOF-SARS spectrometer and TOF spectral acquisition have been described previously.^{4,6} Since the TOF technique is an efficient multichannel collection method which is capable of directly detecting both recoiled ions and fast neutrals (most of the recoils are neutrals) directly in a channel electron multiplier, it is a nondestructive analysis method. The parameters used herein are the following: 2-5-keV $Ne⁺$ or $Ar⁺$ primary beam; pulse width of beam, 30 nsec; pulse rate, 1-50 kHz; average current density, 0.05-0.1 nA/mm²; signal rate up to ≈ 15000 counts/sec; TOF flight path, 98.4 cm; H_2 dose, 10 L [1 L $(langmuir) = 10^{-6}$ Torr sec]. TOF spectra can be acquired in ≈ 20 sec, resulting in a dose of $\approx 10^{-4}$ ions/(surface atom). The W(211) surface consists (see Fig. 4) of parallel close-packed rows of atoms separated by channels; thermal desorption measurements⁸ have suggested that there is a β_2 state located in the troughs and a β_1 state above the rows. Spectra were collected with the sample in the range 340-450 K in order to assure population of only the β_2 state.⁸ The azimuthal directions are defined as follows: $\delta = 0^{\circ}$ (perpendicular to rows) is [01 $\overline{1}$]; $\delta = \pm 90^{\circ}$ (parallel to rows) is [111] and $[1\overline{1}1].$

Classical trajectory simulations, using screened Coulomb potentials, are used to trace the trajectories and map out the cones (Fig. 1). Higher accuracy is achieved by calibrating⁶ the potential; this involves measuring a_c values along crystal azimuths for which the interatomic distances d are accurately known and using these values to determine the experimental R of the cone at different L values. The screening constant of the potential is then adjusted so that the standard deviation of the calculated cone from the experimental points on a

plot of R vs L is minimized. TOF spectra⁴ are collected and the recoil spectral peak intensities I_R (measured as the TOF peak area) are determined as a function of α and δ . SR and DR peaks are deconvoluted at low α . The ability to continuously vary ϕ is important in order to obtain a suitable ϕ where the recoiling and scattering peaks do not overlap. Collecting I_R data as a function of α probes the ability of the incident ions to hit adsorbate sites. Collecting I_R data as a function of δ illustrates (i) the symmetry of the adsorbate positions and (ii) the azimuths along which the recoil channel is accessible or obstructed.

Data for H_2 adsorption on W(211) are shown in Fig. 2 as a recoiling structural contour map (RSCM). It represents I_R data in α , δ space; contour lines connect points of equal intensity. The RSCM provides the following information. (i) It is a concise summary of the experimental recoil data. (ii) It reveals the symmetry of the recoil data in α , δ space, providing a *fingerprint* for hydrogen on the $W(211)$ surface. (iii) Changes in the minimum a_c value reveal azimuths along which the shadowing conditions differ, i.e., shadowing of H atoms by neighboring H or W atoms differs. At low α a sharp rise in I_R is observed in Fig. 2; its constant position (near $\alpha_c = 4^{\circ} - 5^{\circ}$) over $-85^{\circ} < \delta < +85^{\circ}$ indicates that H is rather uniformly accessible to the beam in relatively high positions above the surface. At $\delta = \pm 90^{\circ}$ the I_R maximum occurs at $\alpha \sim 18^{\circ}$ ($\alpha_c = 10^{\circ}$) signifying close packing⁶ along this direction. There is a large, relatively flat, featureless region in the center and background of the RSCM. This indicates that there is no H buried deep in the troughs that is accessible for recoiling.

Hydrogen atoms in on-top or short-bridge positions

FIG. 2. Recoiling structural contour map for the W(211)-H surface using 4-keV Ar⁺ ions and $\phi = 45^\circ$. The α_c value, chosen at one-half the peak height, is plotted as a heavy line. Regions with high contour densities represent maxima in I_{DR} .

above the $[1\overline{1}1]$ rows would be in such high positions (the normal H-W bond length¹⁰ is in the range $1.74-1.95$ Å) that they would be well outside of the Ne/W and Ar/W shadow cones which have radii⁴ in the range 0.95-1.30 A, respectively. As a result, the sharp rises observed in Fig. 2 at low α would not be present because the cone edges would not move through the Hatom positions; instead, a rather uniform I_R would be observed as a function of α . The only H-atom positions that are consistent with all of the data (as detailed elsewhere⁶) are located within a band above the $[111]$ troughs. Shadowing of H in this position along $-85^{\circ} < \delta < +85^{\circ}$ directions is due to neighboring first-layer W atoms and along $\delta = \pm 90^{\circ}$ is due to neighboring H atoms. We now consider determination of the adsorption-site coordinates.

 $[211]$ coordinate, i.e., perpendicular to plane of firstlayer W atoms.—The low α_c values, $4^{\circ} - 5^{\circ}$, for $-85^{\circ} < \delta < +85^{\circ}$ are due to SR events resulting from focusing of projectile trajectories above the H atoms by first-row W atoms (Fig. 1). At such low α values, the edge of the W-atom shadow cone is relatively flat above the trough such that H atoms located at a given height z but different lateral positions within the trough all appear at the same α_c value within $\approx 0.5^\circ$. However, changes of only 0.1 Å in z produce changes in α_c of as much as 2° -3°. This feature can be used to determine z as follows. Because of the $\cos^2\phi$ dependence of the DR energy and the insensitivity of the H scattering energy to scattering angle Θ (H loses < 2% of its energy during

FIG. 3. Lower: Incident-angle scans of H recoil intensity. The steep slope and low a_c for $\delta = 0^\circ$ are due to focusing by W atoms (SR events) and the gentle slope and higher α_c for $\delta = 90^{\circ}$ are due to focusing by H atoms (DR events). Triangles, 5-keV Ne⁺; closed circles, 2-keV Ne⁺; open circles, 2keV Ar⁺. Upper: Calculated TOF vs α curves for H DR and SR $(a-d)$ into $\phi = 45^\circ$ compared to experimental TOF using 2-keV Ar⁺ along the $\delta = 0^\circ$ azimuth.

refiection from the W lattice), the final energy (and TOF) of SR H atoms is determined mainly in the initial projectile-H collision and can be calculated from Eq. (1) as a function of α and z . The best agreement between the experimental and calculated TOF vs α curves using 2- (see Fig. 3) and 5-keV Ar^+ yielded $z = 0.60$ and 0.55 A, respectively.

H-*H* interatomic distance along the 1111 trough.
- Along this azimuth, a_c is determined by the self-H-H interatomic distance along the $[I\bar{I}\bar{I}]$ trough. shadowing of incident projectile trajectories by H atoms, since the H atoms are high enough above the secondlayer W atoms to be well outside of the W-atom shadow cones. The Ne trajectories penetrate into the H-atom "shadow cone;" the presence of H causes the trajectories to diverge⁶ sufficiently such that they concentrate at the "cone edge." This cone edge is not sharp as in the case of a heavy target atom. Note the gentle slope at $\delta = 90^{\circ}$ and steep slope at $\delta = 0^{\circ}$ in Fig. 3. DR of H atoms into ϕ occurs when the cone edge is at a distance equal to the appropriate p below the atom. Using the $\alpha_c = 10^{\circ}$ (Fig. 3), $p = 0.13$ Å for H DR into 45°, and the calculated extremities $(R = 0.29 \text{ Å}$ and 0.38 Å) of the cone edge, the H-H distance can be varied until the perpendicular distance from the neighboring H atom to the center of the cone is $p + R$. The best fit is obtained⁶ for an H-H spacing of \approx 2.7 Å, in excellent agreement with the W-W lattice spacing of 2.74 Å along $\delta = \pm 90^{\circ}$ and, therefore, a coverage of one H atom per W lattice spacing. The low α_c value $(\alpha_c = 5)$ along the $\delta = 0$ ° azimuth indicates that H atoms are too far apart to be aligned within the same trough. This result is consistent with one H atom per trough along the $\delta = 0^{\circ}$ direction for a saturation coverage of $\sim 8 \times 10^{14}$ atoms/cm².

FIG. 4. Contour plot of P^{tot} [Eq. (3)] for $T = 300$ and 450 K. P^{tot} is normalized to 100. The solid and dashed lines represent increments of 10 and 2.5 units of P, respectively. The open circles at the corners represent first-layer W atoms and the closed circle in the center represents a second-layer W atom; the atomic sizes are not scaled to the W radius. I denotes the short-bridge and II the threefold trough sites.

We have shown that the β_2 form of hydrogen on $W(211)$ is confined to a band located at 0.58 Å above the troughs with an average H-H spacing equal to that of the W lattice. In order to determine the specific adsorbate site from recoiling, the adsorbed species must be localized to a volume smaller than the shadow cone. These conditions are met in the case of oxygen on W(211) where a definite site (the threefold trough site) is determined, 6 but clearly not met in the case of hydrogen; the results indicate that H is delocalized along the troughs.

The equilibrium distribution of H on $W(211)$ using a potential-energy surface generated by the effectivemedium theory⁵ has been calculated. The Schrödinger equation was numerically integrated using the relaxation equation was numerically integrated using the relaxation
method.^{11–13} The resulting H-W potential is shallow with a barrier to motion along the $[1\overline{11}]$ troughs of only 100 meV. The lowest excited states correspond to vibrations parallel to the surface which have large amplitudes, fill a large portion of the trough, and can be populated thermally. The probability for finding the H atom at position R in the unit cell can be obtained from the thermal average

$$
P(R,T) = \frac{\sum_{k} e^{-\beta E_{k}} |\psi_{k}(R)|^{2}}{\sum_{k} e^{-\beta E_{k}}},
$$
 (2)

where $\beta = 1/k_BT$ and E_k is the energy of excited state k. All nonpropagating excited states (total of 10) with E_k < 77 meV are included in the summation.⁶ $P(R, T)$ is finite over the entire unit cell; i.e., the H atom exists within a band above the trough. This band extends vertically from 0.4 to 0.8 A. above the first W layer, with a most probable distance of 0.60 A. At 0 K, only the ground state would contribute to the sum of Eq. (2) and $P(R)$ would be localized. The total probability, $P^{tot}(x,y)$, of finding a H atom at lateral position x, y is

$$
Ptot(x,y,T) = \int dz P(x,y,z,T).
$$
 (3)

A contour plot of $P^{tot}(x,y)$ for $T = 300$ and 450 K in a A contour plot of $P^{\text{tot}}(x, y)$ for $T = 300$ and 450 K in a surface unit cell is shown in Fig. 4. P^{tot} is finite throughout the unit cell with maxima at the short-bridge and threefold trough sites,⁶ but exhibiting largeamplitude vibrations about these positions. Thus, the

calculations show that at 450 K, H atoms are delocalized^{11,14} to a greater extent than the W shadow-cone radius.

In summary, TOF-SARS is capable of detecting surface hydrogen with high sensitivity and providing a realspace determination of its adsorption site. Coupling these data with EMT calculations provides a powerful probe of hydrogen-surface interactions.

This material is based upon work supported by the National Science Foundation under Grants No. CHE-8814337 and No. DMR-88-01027 and the Texas Advanced Research Program.

(a) Permanent address: Department of Physics, Rice University, Houston, TX 77251.

'W. Ho, R. F. Willis, and E. W. Plummer, Phys. Rev. Lett. 40, 1463 (1978).

²G. B. Blanchet, N. J. DiNardo, and E. W. Plummer, Surf. Sci. 118, 496 (1982).

³B. J. J. Koeleman, S. T. de Zwart, A. L. Boers, B. Poekema, and L. K. Verheij, Phys. Rev. Lett. 56, 1152 (1986).

⁴J. W. Rabalais, CRC Critical Rev. Solid State Mater. Sci. 14, 319 (1988).

5P. Nordlander, S. Holloway, and J. K. Norskov, Surf. Sci. 136, 59 (1984).

 6 O. Grizzi, M. Shi, H. Bu, and J. W. Rabalias (to be published).

 ${}^{7}M$. Aono and R. Souda, Jpn. J. Appl. Phys. 24, 1249 (1985).

 ${}^{8}P$. G. Cartier and R. R. Rye, J. Chem. Phys. 59, 4602 (1973); R. R. Rye, B. D. Barford, and P. G. Cartier, J. Chem. Phys. 59, 1693 (1973).

9S. R. Kasi, M. A. Kilburn, H. Kang, J. W. Rabalais, L. Tavernini, and P. Hochmann, J. Chem. Phys. \$8, 5902 (1988).

 10 K. A. R. Mitchell, Surf. Sci. 149, 93 (1985); R. Biswas and D. R. Hamann, Phys. Rev. Lett. 56, 229 (1981).

¹¹M. J. Puska, R. M. Nieminen, M. Manninen, B. Chakraborty, S. Holloway, and J. K. Norskov, Phys. Rev. Lett. 51, 1081 (1983).

 $12D$. R. Hamann and P. J. Feibelman, Phys. Rev. B 37, 3847 (1988).

¹³G. E. Kimball and G. H. Shortley, Phys. Rev. 45, 815 (1934).

¹⁴I. Stensgaard and F. Jakobsen, Phys. Rev. Lett. 54, 711 (1985).