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Resonance Contributions to the Photoionization Spectrum of Atomic Hydrogen in an Electric Field
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The photoionization cross section of hydrogen in an electric field is calculated as the sum of resonance
contributions, apart from background. Each contribution is proportional to the imaginary part of the
square of a complex transition-dipole matrix element divided by an energy denominator and has an
asymmetric line shape that is the superposition of dispersive and absorptive Lorentzians. The main
features of experiments on the ground and n =2 states, including asymmetry of the lines and blue shift
of maxima with respect to calculated resonances near zero energy, are reproduced ab initio.

PACS numbers: 32.60.+i, 32.70.Cs, 32.70.Jz, 32.80.Fb

In an electric field the bound states of hydrogen turn
into resonances, ' which can be calculated to high accu-
racy by complex-coordinate methods ' as well as by
"exact numerical solution" of the Schrodinger equa-
tion. Nevertheless, as pointed out in Ref. 6, "to com-
pare calculated values for resonance energies and widths
with experimental data, one needs an analytic line-shape
expression, or a procedure for weighting the poles in the
complex plane to represent phenomena on the real ener-

gy axis." To our knowledge, this problem has remained
an open question, which we seek to solve.

Theoretical analyses of photoionization experi-
ments ' have been carried out by perturbation theory,
by numerical solution of the Schrodinger equation, " '

and by JeA'reys-Wentzel-Kramers-Brillouin semiclassical
methods, ' ' among others. ' The asymmetry of peaks
in the spectrum and apparent shifts of maxima from cal-
culated resonance positions, particularly above zero-field
ionization potential, have attracted special attention,
and various parametrizations valid in limited ranges have
been given' ' that attempt to interpret the spectrum in
terms of nearby resonances.

By considering an exactly solvable model, ' we have
recently been able to derive the exact expansion of the
photoionization cross section cr(E) as a sum of resonance
contributions plus background,

OO 2

a(E) B(E)— g Im
n-i E—En

(E„ in the lower half energy plane). The index n runs
over all the resonances E„ in the lower half energy plane.
The po„denotes the complex transition-dipole matrix
element between the bound state and the nth resonance,
calculated along a path such that the resonance eigen-
function is square integrable. The m E —Eo is the pho-
ton energy, with Eo the energy of the bound state being
ionized. The B(E) represents a slowly varying back-
ground term. We use units such that A, m =e =1.

We show in this paper that the same expansion (1)
holds for hydrogen in an electric field, and we apply it to
calculate ab initio the experimentally observed a(E).
Equation (1) is similar in structure to the well-known ex-
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where 8 is defined by
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(2)

By contrast, if the weighting of the standard Lorentzian
profile for the resonance were the square of the modulus
of the transition-dipole matrix element, one would have
the inappropriate expression

I po, I ( ImE„) I po „ I= —Im
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Tacit assumption that the observed photoionization
profile should exhibit maxima at the resonance positions
has led to questioning the accuracy of experiments. It
is clear, however, that when the profile is significantly
dispersive, the maximum does not occur at the (real part

pansion of the elastic scattering cross section rigorously
proved for finite-range potentials by Humblet and by
Humblet and Rosenfeld. ' Both are essentially Mittag-
LefBer expansions, which accounts for the similarity.
What is notably new and different here, however, is that
the coefficients (residues) of the Mittag-Leffler expan-
sion are identified as squared complex transition-dipole
matrix elements calculated along appropriate paths in
the complex plane, which is both distinctive of the photo-
ionization cross section, and which provides an explicit
recipe to compute the spectrum from the resonance wave
functions.

A most important consequence of Eq. (1) is that the
line shape of isolated resonances is essentially the super-
position of a dispersive and an absorptive Lorentzian—what is sometimes called a Fano profile, although no
Fano mechanism is present. That is, one can write the
resonance contribution as

2—Im Po, n
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of the) resonance position. Furthermore, the dispersive
component decreases only as 1/(E —ReE„), not
1/(E —ReE„), and consequently resonances that may
seem well separated in fact overlap, changing substan-
tially the composite cross section from that of isolated
resonances. This is what happens in hydrogen (cf. Fig.
2) (see also Fig. 7 of Ref. 19 for a simple example).

The rigorous derivation of the expansion of o(E) in
the "double-b-function" model' is a straightforward ap-
plication of complex-variable theory made possible by
the meromorphic structure of cr(E) as a function of
k-(2E)'t . To adapt the derivation in the double-b
model for hydrogen, we start with the expression of
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o(E) as the square of the transition-dipole matrix ele-
ment between the initial state and energy-8-function nor-
malized continuum state,
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and manipulate its using complex-variable theory. To
be able to analytically continue the right-hand side of
Eq. (5), the continuum wave function yE is chosen to be
the product of a real function times e' ~, p being
arctan(y/x), and the scalar products are to be taken
without complex conjugation of the left (bra) function,
but with the sign of nt reversed.

The first step is to apply Cauchy's formula,

We substitute for the circular integration path the difference of two indented paths from —~ to +~ to obtain
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At this point in the double-b model, explicit, specific knowledge of the analytic structure permitted expansion of the
resolvent matrix element as a sum over resonances plus background. In the present case, hydrogen in a uniform electric
field F, we have from Herbst "the implicit, general result that for the Hamiltonian

H ——,
' V —I/r+Fz, (9)

matrix elements of (E —H+ie) ', which are analytic in the upper half E plane, admit (via complex rotation of the
coordinates) a meromorphic continuation to the entire complex plane, with the only singularities being simple poles in

the lower half plane at the resonance eigenvalues. Herbst s result permits a partial fraction expansion of the matrix ele-
ments of the resolvent by applying Cauchy's theorem to a contour enclosing E and the first N resonances:

n E —En
(10)

The residues, as indicated in Eq. (10), turn out to be the squares of the complex transition matrix elements between the
bound state and the complex rotated (square integrable, normalized) resonance wave functions y„. The matrix element
of (E —H —ie) ' gives a similar contribution from the corresponding resonances in the upper half plane, and the two
terms in square brackets in Eq. (8) are complex conjugates of each other when E is real. In such a way one obtains Eq.
(1), with B(E) given by

B(E)- lim
4nto 2 d—E'Im(i, &yplz, z I yp&.
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In contrast with the exactly solvable model, ' we em-

phasize that the previous derivation is merely formal:
There is an implicit assumption of nondegeneracy, and,
since we do not have an explicit formula or even a bound
for the right-hand side of Eq. (11),we have been unable
to prove that the limit exists.

We report ab initio calculations based on Eq. (1) to
interpret two very different photoionization experiments
with polarization parallel to the static field: (i) for the
ground state in a static field F 2.61 MV/cm, photoion-
ized to an energy just above the classical saddle-point en-

ergy, —2F'i in atomic units (Ref. 6), and (ii) for the

t

state with parabolic quantum numbers (n i, n z, rn )
(1,0,0) in a field of 5714 V/cm, photoionized to an en-

ergy in a neighborhood of the zero-field ionization poten-
tial (Ref. 7). The first case is an example of the cross
section dominated by a single resonance, with quantum
numbers (n|,n2, nt) (0,3,0), while in the second case
many overlapping resonances must be considered.

The idea of the calculational procedure is as follows:
The coordinates in the Hamiltonian [Eq. (9)] are rotated
into the complex plane, giving rise to a non-self-adjoint
eigenvalue problem. The (now square integrable) reso-
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nance eigenfunctions are expanded in an appropriate
discrete basis, and the expansion coefficients are deter-
mined by matrix diagonalization methods. In practice
we carry out the calculation in parabolic coordinates to
take advantage of the separability. The details are given
in Ref. 25.

The wave function and energy for the (0,3,0) reso-
nance and the transition dipole connecting it to the
ground state were calculated as sketched above. The re-
sults,

E(0 3 0) —0.042 112718—i0.000270258 a.u.

—1.146578 9 —i0.0147163 eV, (12)

po. io 3 o) — 0—08.7250663+i0 01.0898 130 a.u. , (13)

were then substituted into Eq. (2) and plotted in Fig. 1

(curve a). (The vertical scale is arbitrary. ) Figure 1

(curve b) is obtained by convolution of the theoretical
Fig. 1 (curve a) with the instrumental line-shape func-
tion (the details of which were taken from Ref. 16). The
experimental data are also plotted with error bars for the
standard deviations. It is clear that the theoretically
calculated single resonance contribution accounts for the
major features of the experimental spectrum: the asym-
metric profile with higher "base line" on the high-energy
side.

For the Rottke-Welge experiment we consider the re-
gion between —125 and +50 cm '. We have calculat-
ed variationally the complex wave functions and energies
of the fourteen sharpest resonances in this region (and a
fifteenth at 59 cm ), along with the (1,0,0) initial
state, and the corresponding transition-dipole matrix ele-

ments. The results are plotted in Fig. 2. In this case the
theory has not been convoluted with an instrumental
line-shape function, but the tops of the sharpest lines
have been cut off' to show the detailed structure at a
reasonable scale. The triangles mark the positions of the
calculated real parts of the resonances. Notice that for
the sharp lines, which are relatively symmetric, the trian-
gles fall close to the maxima. For the broader lines,
especially above the zero-Geld ionization energy, the line
shape of single resonances is signiftcantly dispersive,
and the triangles fall between the maxima and minima
of the composite cross section. With one exception, we
have not included contributions from other broader reso-
nances, whose primary importance here would be in
building up the base line. The exception is the contribu-
tion of the (26,0,0) resonance near 59 cm ' that alters
the base line and line shape in the region near the
(25,0,0) resonance at -34 cm '. As mentioned above,
the overlap of the wings of dispersive resonances substan-
tially changes the appearance of the local line shape
(again, cf. Fig. 7 of Ref. 19).

Comparison of the theoretical Fig. 2 with the experi-
mental Fig. 4(a) of Ref. 7 shows excellent agreement
with the positions, widths, and line shapes of the peaks,
from the very narrow near —125 cm ' to the broad
structure above the zero-field ionization threshold. What
is especially important is that the "field-induced modula-
tions" are resonance contributions calculated on an equal
footing with the sharp "LoSurdo-Stark" peaks.

In summary, the contribution of each resonance to the
photoionization cross section, as given by Eq. (2) and as
calculated variationally from first principles, is an asym-
metric combination of dispersive and absorptive Lo-
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FIG. 1. Contribution of the (0,3,0) resonance to the photo-
ionization cross section of the ground state of hydrogen in a
field of 2.61 MV/cm: (curve a) the theoretical contribution of
(0,3,0), calculated via Eq. (2) from the ab initio resonance
eigenfunction; (curve b) theoretical contribution convoluted
with the instrumental line-shape function; + with error bars
indicate the experimental points.

F&G. 2. Contributions from fourteen resonances in the range—125 to +50 cm ' to the photoionization cross section of the
(1,0,0) state of hydrogen in a static field of 5714 V/cm. The
triangles mark the positions of the real parts of the resonances.
There is a fifteenth resonance at 59 cm ' that is also included
in the calculation.
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rentzians, whose relative weights are determined by the
argument of the complex transition moment. The sum of
such contributions [Eq. (1)] accounts for the most prom-
inent features for hydrogen in an electric field, both
below and above the zero-field ionization potential.
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