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%e solve an initial-boundary value problem for the Davey-Stewartson equation, a multidimensional
analog of the nonlinear Schrodinger equation. It is shown that for large time, an arbitrary initial distur-
bance will, in general, decompose into a number of two-dimensional coherent structures. These struc-
tures exhibit interesting novel features not found in one-dimensional solitons.
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We consider an initial-boundary value problem for the
Davey-Stewartson (DS) ' system of equations
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The above system is the shallow-water limit of the
Benney-Roskes equation, where q is the amplitude of a
surface wave packet while p characterizes the mean
motion generated by this surface wave. (One assumes a
small-amplitude, nearly monochromatic, nearly one-
dimensional wave train with dominant surface tension. )
Equation (1) provides a two-dimensional generalization
of the celebrated nonlinear Schrodinger equation. Fur-
thermore, it arises generically in both physics and
mathematics. Indeed, it has been shown that a very
large class of nonlinear dispersive equations in 2+1 (two
spatial and one temporal) dimensions reduce to the DS
equation in appropriate but generic asymptotic con-
siderations. Physical applications include water waves,
plasma physics, and nonlinear optics.

We find it convenient to introduce characteristic coor-
dinates &-x+y, ri-x —y, and Ui—= —

e& 2 Iq I

U2 —= —
rp&

——,
'

I q I; then the second equation in (1) can
be integrated and Eqs. (1) reduce to

iq, + (q~t+ q«) + (U~ + U2) q -0,

where u~(ri, t)=—Ut( —~, ri, t), u2((, t)= U2(g, —~—,t).
In this note we use the inverse scattering transform
OST) method to solve Eqs. (2), where q (g, r1,0),
u&(ri, t), and u2(g, t) are given, are decaying for large
values of g, ri, and are bounded for large values of t.

The first multidimensional equation solved in 2+1 di-
mensions was the three-wave interactions. However, the
relevant approach was based on the nondispersive nature
of this system. The IST method was extended to disper-
sive equations in 2+1 dimensions in Refs. 6-8. A disap-
pointing feature of all dispersive multidimensional equa-
tions studied so far has been the lack of two-dimensional
exponentially decaying solitons. Taking into considera-
tion the important role played by solitons in the applica-
tions of one-dimensional solvable systems, the above
drawback has hampered considerably, in our opinion, the
applicability of the exactly solvable multidimensional
equations.

The special case of u~ u2 0 was solved in Ref. 8; in
this case, which is typical of what has occurred so far
with multidimensional problems, arbitrary initial data
disperse away as t~ . We were motivated to reexam-
ine Eqs. (2) because of the remarkable discovery of Boiti
et aI. ' that the DS equations as well as a modified
Korteweg-de Vries equation in 2+1 dimensions admit
exponentially localized solitons. The above authors used
Backlund transformations to obtain these solitons and in-
vestigated the dynamics of a certain two-soliton solution
obtained using a nonlinear superposition formula, show-
ing that the only eOect of the interaction of the corre-
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sponding solitons is a two-dimensional phase shift. Our
new investigation of Eqs. (2) shows that if u|, uq are
nonzero then energy from the mean Qow can be
transferred to the surface waves where it can create
focusing effects. The mathematical manifestation of this
phenomenon is the fact that DS equations admit local-
ized solutions which decay exponentially in both g and rt.

Furthermore, any initial disturbance q((, rt, 0) decom-

poses to such solutions as t~ ~. Indeed, (i) for arbi-
trary time-independent boundary conditions, any arbi-
trary initial disturbance will decompose into a number of
two dit-nensional breathers as t ~. (ii) Similarly, for
arbitrary time-dependent boundary conditions, any arbi-
trary initial disturbance will decompose into a number of
t~o-dimensf ona1 traveling localized structur es as

t
t ~. A simple such solution of (2) is'
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M2+1 —,
' „drt'rM)+( exp[ik(q' —rt)],

(4)

Equations (4) are Volterra integral equations; thus for q
and r in an appropriate space, M+ is analytic in the
upper half k-complex plane. Similarly, if M satisfies
equations similar to those of (4), with the integrals in
M2+~, M|+2 replaced by f"- and ft, respectively, it fol-
lows that M is analytic in the lower half k-complex
plane. Let p —,p denote the vectors tt ——= (M| i,
M2~ ), p —=(M2|,M22 ) . Then M+, M are related
via the scattering equations

p (k) —P (k) „dlS(k, l)e""+' tp (l),

where p~, k~ E R+, g, rt 6 Rp, ,k,p, c,c & C, g g 2ptt—g, and rj g —2ktt —rt. A simple breather solution
corresponds to pl -~y 0.

Equation (1) is the reduction r —q* of a more gen-
eral system. This system is associated with the Lax
equation (8„+J8~)W+Q~ 0, where J diag(1, —1)
and Q is an off-diagonal matrix containing the potentials
q, r. In what follows we first recall the solution of an in-
verse problem associated with this equation. Namely, we
reconstruct Q in terms of appropriate scattering data
S(k, l), T(k, l). We also consider the case of degenerate
S,T, since this case is important for the discussion of sol-
itons. We then show that if q, r satisfy the more general
system mentioned above, the evolution of S,T depends
crucially on u&, u2. Finally, we use certain completeness
arguments to solve the equations satisfied by S,T in
terms of u I, u2 and initial data.

(1) Using characteristic coordinates and letting
qr exp [ik (Jx —y) ]M, the Lax equation for M (p, rt, k )
is solved by the following linear integral equations:

1T(k, l) —= dgdrtrM~+~e' "+"~

S(k, l) = „,dg drt qM22e

Equations (5) define a nonlocal Riemann-Hilbert prob-
lem, the solution of which yields M+, M in terms of
T,S. Then q, r follow from

q —,dkdl S(k, l)M~~ exp(ilrt+ikg) .

In the case that T,S are degenerate, the above formal-
ism yieMs a closed-form solution. " It is now more con-
venient to work with the Fourier transform of S,T. Let
T(k, l) QJ~'|TJ (k) T~ (l), S(k,1) gj~ )SJ(k)SJ (I),
and let i, i, cr,8 denote the Fourier transforms of
T, T,S,S. Then the Riemann-Hilbert problem (5) can
be solved in closed form and q is given by

q x 'g~-'~a~(MJ)~, where (MJ)1 is the first com-

ponent of the vector M~, which satisfies the following

linear algebraic system:

1

M„- 0 o„(rt) — g dpr, (p)cr„(p)M, ,
2x J-)4--

(7)
0 @f2

M„-
1

o„(&)— g dp r„(p)cr, (p)M, .
2XJ ]~

(2) The associated t part of the Lax pair is given by

e, -iJ(8( ti„)'e iQ—(8g 8„—)++&+—,

where w is the vector (0'i, 4'z), A~~ iU~, A~q —iq„,
A2~ rr~, and A22 —iU2. However, in the presence of
nontrivial boundary conditions Eq. (8) must be modified.
The situation is conceptually analogous to the case of the
nonlinear Schrodinger for x E [0,~); a nontrivial bound-

ary condition at x 0 implies a modification of the asso-
ciated t part of the Lax pair. ' The precise modification
depends on the form of the integral equation satisfied by

For concreteness let +]=—e' M~2, +2=—e
can be shown' that the time evolution of %' is given by
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an equation similar to (8) where the vector v is added on
the right-hand side of (8). The vector v satisfies an
equation similar to the one satisfied by + where the forc-
ing is replaced by e' ~f —ik +iu2]. Thus

v —ik e+„t dl y(k —l)+(l),
p oo

y(k) —= „d&e '"~u2(g, t) .

Having obtained the correct t part of the Lax pair, it is
now straightforward to obtain the time evolution of the
scattering data. Indeed, if o (k, rt) =f~dl e""S(k,l),
then o(k, rt) lim~ — +~, hence o satisfies

o, -iu)o+icx„„ik o—+„dl y(k —l)o(l, rt) .

Thus if S((,ri) denotes the Fourier transform of S(k, l),
o solves

first consider the solution of Eq. (10) in the case that
u~, u2 are t independent. We note that Eq. (10) is the
linear limit of (2). Using separation of variables it fol-
lows that the solution of Eq. (10) is intimately related to
the analysis of the stationary Schrodinger equation
+„„+[u(x)+k ]+ 0, where u C R. We recall that
this equation plays an important role in the integrability
of the Koretweg-de Vries (KdV) equation, and it has
been well studied; see, for example, Ref. 3: An arbitrary
decaying function u(x) gives rise to N discrete eigenval-
ues, kj ip~, pj E R+; furthermore, the discrete, p1(x),
and continuous eigenfunctions, p(x, k), form a complete
orthonormal set. An arbitrary L2 function f(x) can be
expanded in the form

N

f(x) - g p.v. (x)+„dkp(k)v (x,k),
n 1

p„=- dxv.'(x)f(x),
iS, +Sg+S„„+(u2+u~)S 0,

(10) p(k) —=„dxv
' (x,k)f(x) .

S(g, ~)-=„,dk die'"~+'"S(k, 1) .
fL

Similarly, for T where i is replaced by —i. Equations
(5) and (10) provide in principle the solution of the
initial-boundary value problem of DS. Given q((, r1, 0),
u&(rt, t), and u2(g, t), Eqs. (10) yield S(k, l, t); similarly
one obtains T(k, l, t). Then the solution of the
Riemann-Hilbert problem (5) yields M and then
q(g, rt, t) follows.

(3) We now concentrate on the case r ——q*, and we

If the reflection coefficient of the potential u is zero, then
the discrete eigenfunctions can be found in closed form,

N
J Pn Pg ~ PnCn&j ( + )x x

j 1 Pn+Pj

N

u -2 g c„[e~""q„(x)]„.
Using the above results about the stationary Schrodinger
equation it follows that

N, M

S(g, rt, t) g p„~X„(g)Y (rt)e' "" '+J,dkdl p(k, l)X(g,k) Y(rt, l)e
n 1,m 1

2 2
M

+ J dk g p„(k)e "" X„(g)Y(rt,k)+ g p (k)e' X(g,k)Y (ri)
R 1 m 1

(12)

,d( drt S(g, r1,0)F*((,rt, k, l ),
where for p„, F X„(g)Y (rt); for p(k, l), F X((,k)
x Y(n, l); for p„(k), F X„(g)Y(rt,k); and for p~(k),
F X(g,k) Y (rt). Similarly for T(g, rt, t), where t is re-
placed by —t.

The stationary-phase method implies the following
asymptotic behavior in time:

N, M

S(&,rt, t) — g p „X„(&)Y (rt)exp[i(p„'+X' )t],
n 1m 1

as t (13)

Thus as t~ the scattering data become degenerate

where [X(g,k),X1(g),p1 pjj 1, . . . , N] and [Y(q,k),
Y.(rt),p. g1; j 1, . . . ,M] are the orthonormal sets

corresponding to uq(g) and u&(rt), respectively. Fur-

thermore, p„, p„(k), p (k), and p(k, l) are obtained

from the initial data via

and using (7) one obtains for q a localized solution
which oscillates in time (breather). The asymptotic be-
havior of q can be calculated in closed form provided
that A„,Y can be found in closed form. For example, if
u1, u2 are reflectionless, then X„,Y satisfy the linear
system (11), and q becomes what we call an (N, M)
breather. From the above it follows that if at least one
of the two boundaries does not give rise to bound states
of the Schrodinger operator, then every initial condition

q(g, r1,0) will disperse away. If bound states do exist, the
asymptotic behavior is essentially determined by these
bound states; the initial condition only fixes the constant
Pnm-

If u1, u2 are time dependent, then separation of vari-
ables implies that the solution of Eq. (10) is now inti-
mately related to the analysis of the time-dependent
Schrodinger equation i+, ++„„+[u(x, t)+k ]%' 0,
u E R. %'e recall that this equation plays an important
role in the integrability of the Kadomtsev-Petviashvili
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spectively. Then Eqs. (7) yield an (N, M) traveling lo-
calized solution; the (1,1) case is given by (3). We note
that nontrivial contributions occur when x+2plt —l.

It is quite remarkable that the stationary and nonsta-
tionary Schrodinger operators, which are crucial for the
integrability of the KdV and KP equations, respectively,
are also crucial for obtaining coherent solutions of the
DS equation.

We note that Eq. (10) is the linear limit (q —0) of Eq.
(2), which is consistent with the fact that the inverse
scattering transform reduced to the Fourier transform in
the linear limit. Since the two-dimensional localized
solutions are associated with the discrete spectrum of Eq.
(10), it follows that they are nonlinear distortions of the
bound states of the linearized equation. It turns out that
in contrast to one-dimensional solitons these two-
dimensional coherent solutions do not in general preserve
their form upon interaction and exchange energy (only
for a special choice of the spectral parameters these solu-
tions preserve their form and the solutions of Ref. 10 are
revoked). ' ' Furthermore, these localized structures
can be driven everywhere in the plane by choosing a suit-
able motion for the boundaries. ' In Fig. 1 i q i for the
(2,2) traveling localized solution is plotted at t = —4 and
4 for specific values of the spectral parameters. We note
that the form of each lump changes upon interaction (for
details see Ref. 15).
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FIG. l. The (2,2) traveling localized solution at (a) t = —4
and (b) t 4.
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