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Correlation Length of the Three-State Potts Model in Three Dimensions
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A Monte Carlo study is carried out for the three-state Potts model in three dimensions. The correla-
tion length is shown to remain finite and to be discontinuous at the transition point. It is also shown that
the transition exhibits genuine first-order characteristics in all aspects.
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Considerable eA'ort has been invested in the study of
the behavior of the three-state Potts model in three di-
mensions, especially in the determination of the order of
its phase transition. The Monte Carlo study of the inter-
nal energy of the order parameter indicated that the
transition is weakly first order. ' There is, however,
some circumstantial evidence ' indicating that the cor-
relation length increases towards the critical point, which
is usually taken as a characteristic of a second-order
phase transition. No direct numerical attempts have so
far been made to measure the correlation length to set-
tle this problem.

This model has recently attracted our great interest
because of a claim made by the APE Collaboration that
the finite-temperature phase transition of QCD may be
second order. This claim is based on their observation
that the correlation length of the system appears to be
divergent. On the other hand, the Columbia University
group found a small but finite discontinuity in the inter-
nal energy at the transition point. This status looks
quite similar to that for the three-state (q =3) Potts
model in three dimensions. In fact this system is known

to be an eAective model for the Polyakov line for the
QCD system at finite temperatures. This motivates our
study of the Potts model with the hope that it would pro-
vide a hint to resolve the confusing status of the QCD
finite-temperature phase transition.

In this letter we report a precision Monte Carlo study
of the phase transition of the q =3 Potts model on a sim-

ple cubic (sc) lattice in three dimensions, with a special
emphasis on the behavior of the correlation length close
to the critical point. We show that the correlation length
remains finite and is discontinuous at the transition
point. We also demonstrate that the correlation length
appears to diverge, if a proper averaging procedure is not
taken.

Very recently we have received a paper' in which a
similar Monte Carlo analysis was made with a statistics
almost comparable to ours. The authors of Ref. 10 have
concluded that the transition is of first order and also
shown that the apparent divergence of the correlation

c(t) =(o(t)o(o)) —(o(t))(o(o)), (3)

with O(t) the average of N, spins on a plane located at t

in the 1V, direction.
On a 32 x48 lattice the system shows a clear flip-flop

signature between the disordered (symmetric) and or-
dered (broken) phases from P=0.3669 to 0.3671. The
typical tunneling time is several times 10 sweeps. This
flip-flop behavior is exemplified in Fig. 1 with respect to
the order parameter N(p) defined by Ref. 1, N(p)
= —', (n*) ——,', with n* the maximum population of the

length extracted from a naive procedure does not repre-
sent the physical one. The procedure taken by them,
however, does not give a correct physical correlation
length in the vicinity of the transition as we discuss later.
There also emerged another Monte Carlo analysis of the

q =3 Potts model with the inclusion of antiferromagnet-
ic next-to-nearest-neighbor interactions by the APE
group, '' which stresses the similarity between this sys-
tem and their result for the finite-temperature QCD, i.e.,
possible divergence of the correlation length near the
transition point. The correlation length measured by
them, however, seems to correspond to the unphysical
one.

We take the Hamiltonian

H= ——', g(6, , —1),
(i,j )

with (i,j ) the sum over the nearest-neighbor spin pairs in
the sc lattice, and the statistical system is defined by
Z =exp( pH). Equation —(1) is also written as

H = —g (Res;s~ —1)
(i,j )

using a Z3-valued spin variable s;. We employ a lattice
with sizes , x&, =32 x48 and 48 x64 with the
periodic boundary condition and make typically (0.4-1)
x 10 sweeps at each p with a heat-bath Monte Carlo
updating algorithm. To examine the size dependence we

also made several runs on 12 x16 and 24 x32 lattices.
To extract the correlation length we use a zero-
momentum projected correlation function,
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FIG. l. (a) Time history of the order parameter C at
P=0.3670 on a 32'X48 lattice. The first 5X10' sweeps of the
run (a million sweeps total) are shown. (b) Histogram of &9

corresponding to (a). Here all of the data (1&&10 sweeps) are
used.
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FIG. 2. The correlation length as a function of P on a 48
&&64 and a 32 &48 lattice. Lines are drawn to guide the eye.

states projected onto the Z3 axes.
On a 48 x64 lattice we observed a clear two-state sig-

nal for the range 0.366975» P ~ 0.367075. A typical
time for staying in one state is several times 10 sweeps.
Our estimate of P, on this lattice size is P, =0.367025
+ 0.000050. This coexistence of the two states is count-
ed as a clear signal for a first-order transition.

We estimate the distance-dependent correlation length
defined by

&(t) = —[In[C(t+ I)iC(t)]] (4)

(In actual calculation, we take the eA'ect of the periodic
boundary condition into account. ) When ((t) stays at a
constant value for a considerably wide range of t, we can
extract the correlation length g from the data of g(t). In

the disordered phase the second term of (3) is negligibly
small and is set equal to zero.

On a 48 x64 lattice two states are clearly separated
in our data, and we computed the correlation length sep-

arately for two phases. On a 32 x48 lattice we have

rapid tunneling between two phases. We then estimated
the correlation length separately for disordered and or-
dered states by dividing the run into two sections. Here
we used a criterion @)0.23 (&0.23) to separate the
ordered (disordered) phase [the number corresponds to
the minimum position of the double peak in the histo-

gram of N, see Fig. 1(b)].
We present in Fig. 2 the correlation length for both

disordered and ordered phases. We estimated ( from
g(t) for t = (0.5-2)g [((t) varies by about ~ 10% in this

range], and the error shown stands for both statistical er-
rors obtained by grouping the runs and systematic errors
due to the variation of g(t) in the t range that concerns
us. We see that the correlation length changes little
when the size of the lattice is increased from 32 X48 to
48 X64. We then conclude that g stays finite at P=P,

as the volume V ~ (V =N, x N, ) when one ap-
proaches from either side of P, . Our estimate is

(5)

(6)

Let us now attempt to calculate the correlation length
without separating the two phases on a lattice with size
32 x48 or smaller. Here we do not subtract the second
term of (3). The result presented in Fig. 3 shows that
the correlation length g' thus defined takes a value much
larger than g and it is as large as ~ N, /2. We also found
that g' increases as —N, near the critical point. From
such a measurement one might conclude that the corre-
lation length is divergent at P =P, .

It is easy to see that this superficial divergence is
caused by the fact that (O(t)O(0)) does not exhibit an

exponential decay but approaches a constant due to an
admixture of the ordered phase by the tunneling. A
similar phenomenon is observed in the ordered phase for
the Ising model in two and four dimensions. ' ' The
divergent correlation length is interpreted as merely rep-
resenting the mass gap between the two degenerate mini-
ma in the symmetry-broken states. It is pointed out that
the true correlation length is to be extracted from the
second harmonics of the exponential decay for this
case. ' In our q=3 Potts model, however, the tunneling
occurs between the four degenerate minima (one in the
symmetric state and three in the symmetry-broken
states), and these degeneracies will be lifted. After the
removal of this degeneracy, these four states have dif-
ferent symmetries and hence have diAerent physical
correlation lengths. Therefore, one needs higher har-
monics to analyze the correlation function, if one applies
a similar analysis to the present case. The authors of
Ref. 10 assumed, however, that the correlation function
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FIG. 3. The "correlation length" g' obtained from an expo-
nential-decay fit to the correlation function without separating
the ordered and disordered phases of the run (32 &48 lattice).
Data for other sizes are also shown at P =0.3670 to exhibit the
lattice-size dependence of g'. Solid points are the true correla-
tion length g as given in Fig. 2 (g' =( for P & 0.3668).

is given by a sum of two exponential terms and extracted
the physical correlation length from the second harmon-
ics also in the case of the q =3 Potts model in three di-
mensions. Therefore this analysis failed to reveal the
discontinuity of the correlation length at the transition
point, while they noticed the diff'erence between the tun-
neling correlation length and the physical correlation
length.

In our analysis we have also measured the specific heat
[C,, =V '((H ) —(H) )/9] and the susceptibility [g
=V '(((gs;) ) —(gs;) )]. We found (see Fig. 4) that
all quantities stay finite as p p, ~. This contrasts with
the observation in Ref. 3 where it was found that they
obey a power law satisfying hyperscaling. We note that
the measurement of Ref. 3 was made far from the criti-
cal point in view of the present calculation; our analysis
shows that a power-law behavior is lost near the critical
point.

In conclusion, we have shown that the three-state
Potts model exhibits a behavior typical of a genuine
first-order transition in the vicinity of the critical point in

all aspects: A clear two-state signal is seen; the correla-
tion length is finite for both p p, -+ with g(p, +)
Ag(P, .—); and the specific heat and the susceptibility are
also finite. Our analysis suggests that the superficial
power-law behavior claimed in the literature ' arose
from the fact that physical quantities were calculated for

FIG. 4. (a) The specific heat and (b) the susceptibility as
functions of p on a 48 &64 and a 32 x 48 lattice.

the region quite far away from the transition point,
where the second-order fixed point in the metastable re-
gion may control the behavior.

Our final comment is that if the correlation length is
measured without separating the two phases, the leading
exponential behavior of the correlation function leads to
a superficially divergent correlation length, which is not
taken to be the physical correlation length. We may ex-
pect that a similar situation emerges also for the finite-
temperature QCD system.
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