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t-J Model and Nuclear Magnetic Relaxation in High-T, Materials
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We obtain the Fermi contact term of the electron-nuclear effective Hamiltonian describing the cou-
pling between the planar Cu(2) nucleus and the O(2, 3) nuclei, on the one hand, and the eff'ective de-
grees of freedom of the one-band t J(or H-eisenberg-Hubbard) model, on the other. The details of the
resulting couplings suggest that the copper and oxygen relaxation rates are sensitive to antiferromagnetic
correlations in different degrees. In the insulating phase we predict that the effective dynamical critical
exponent for O(2, 3) is reduced by two from that of Cu(2).

PACS numbers: 76.20.+q, 74.70.Vy, 75.10.—b, 75.40.Gb

Recent experiments' on nuclear relaxation in the
1:2:3and 2:1:4compounds have yielded a wealth of de-
tailed data, and indicate' that the planar Cu(2) nuclear
relaxation differs substantially in its temperature depen-
dence from that of O(2) relaxation, at least in the super-
conducting materials above T, . Below T„however, the
two relaxation rates are similar, suggesting that there is
a single species of fluctuating electronic spins relaxing
the two neighboring nuclei. It is therefore surprising
that above T, one is seeing drastically different relaxa-
tion rates.

In this work we take the point of view, proposed by
Anderson, that there is an effective one-band descrip-
tion of the copper-oxide plane —namely the t-J (Heisen-
berg-Hubbard) model. The variables in this model are
projected ones, obtained by eliminating many variables
which are expected to be irrelevant in the low-energy
sector of the problem. The NMR probes different bare
degrees of freedom in the problem, and hence a
difference in behavior of the Cu(2) and O(2) rates indi-
cates that we may be able to test in a nontrivial sense the
proposed projection.

These considerations have motivated this work. Our
aim is to take a well defined projection of a declared set
of bare variables to a one-band model, to add on to this
the electron-nuclear interactions specific to Cu(2) and
O(2, 3) nuclei, and to examine whether these could
derive from a single set of variables and yet display
different behaviors within a controlled calculation. We
find that the reduction proposed by Zhang and Rice can
be interpreted as a controlled projection —provided one
uses a particular ratio of Fourier components of a certain
hybridization function as an additional small parameter.
We then extend the analysis of Mila and Rice to the
case of O(2,3), wherein we propose that the oxygen 3s-
like states mix with the active degrees of freedom. The
picture that results is that the two nuclei experience con-
tact with the same set of spins of the t-J model via two
different well defined form factors. The differences then
are argued as arising from these form factors. In the
stoichiometric case (LaqCu04 or YBa2Cu3O6), the
present calculation predicts that the effective dynamical
exponent for the oxygen nucleus is reduced relative to

that of copper by two. In the doped case (say,
YBa2Cu307), we do not have a good justification for us-
ing a single-length scaling hypothesis for the dynamics.
However, heuristically, such an Ansatz leads to interest-
ing suggestions regarding spin correlations in the doped
case as well.

We begin by writing the three-band model (in hole no-
tation) with bare parameters in momentum space with
H H(+H2,

&d Z d&~d&gf+ ep Z (pkrrpk~+pkcrptv )

+ Ud g n,"ln„")

and

H q
= —(2i )V~ d g dk [sin (k /2) pk

+sin(k~/2)pg ]+H.c. (2)

Here we have chosen to ignore several additional terms
that may be added, such as Up or Up-d which have been
suggested in the literature, ' in order to focus on the
spin degrees of freedom, and will in fact set Ud =~ in
order to bring out the qualitative feature of our argu-
ment. In common with Zhang and Rice, we will assume
that the direct oxygen-oxygen overlap is small;
specifically, the following analysis requires a two-sided
inequality,

Vp-d Vo-o
(3)

Vp-d

to be fulfilled. The operators pk, pI, , and dk are
Fourier components of p" (r+x/2), p~(r+y/2), and
d (r), which are defined at the two midpoints of the
square lattice links, and the corners, respectively; the
factors of sin(k„/2), etc. , are a consequence of the phase
factors assumed in Ref. 6 and reflect the local quantum
chemistry. " We shall write all hybridizations in k space
for brevity. In order to proceed, we work with "canoni-
cal" fermions obtained by inspection from Eq. (2) as
ak i (s„p"+szp )/pk and Pk = ( —i ) (s~p —s„p~)/pk,
where s„—=sin(k„/2), s~ =sin(k~/2), and pk =—fs„+s~ I

'

(we shall use these abbreviations elsewhere in this pa-
per). The species of fermions ak and pk then are in-
dependent, and the p's do not mix with the d's, thereby
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remaining at an energy ep and hence eliminated from the problem. Thus H2 —2Vp d pk p/, (dk ak +H.c.). We can
now use degenerate perturbation theory to mix the states of H~ by various orders of H2 and find H, ff H3 +H where

H,„-J,„Q(s,"sj+ —,
' ),

&ij &

with J,„32Vp d/(ep —ed), and

H3 [4Vp d/(ep —ed )]g d„, ,d„, ,a„,a.. .P(r; —r/)P (r; r/) . —
ijk

(4)

H, „(Cu(2)) 2 ao+I;,at, r', ,a„. .. (6)

ii+x/2 Pi+x/20'i I 2 I +x/2EJ

Here P(r) is the Fourier transform of pk, and as usual,
one argues that H,„ is operative at the insulating limit
and that H3 comes into play when more holes are added.
Now H3 contains several terms all at the energy scale

Vp- d/(E'p E'd) and it is not obvious as to whether a fur-
ther reduction is possible. A somewhat similar, but for-
mally clearer problem was considered by LaCroix, ' who
considered a Kondo lattice with coupling J» between lo-
cal moments and an otherwise free set of tight-binding
electrons with hopping tk in the limit of large J»/tk.
Here one has a controlled expansion in which local sing-
lets are formed by the Kondo coupling and the hopping
term mixes this manifold within first order, leading to an
effective Hamiltonian of the U ~ Hubbard model.
The triplet manifold is at a higher energy —J~ and ig-
norable provided tk/J»«1, and the tightly bound sing-
lets are describable as U ~, Hubbard-model holes. In
the present problem we do not have an a priori small pa-
rameter until we examine the details of the function
P(r). We first note that its values at distances (0,0),
(1,0), (1,1), and (2,0) are, respectively, —0.96, —0.15,
—0.02, and —0.01. Hence we could use the ratio
P(1,0)/P(0, 0)—1/7 to organize the term H3 [Eq. (4)]
into a Kondo-lattice-type form. Within this spirit we
find H, ff Hk;„+H,„,where

Hkin teff g Pd (ci~~j~+ cj~;o)Pd (5)
&ij &

and t,fr [2Vp d/(ep —ed)][p(0, 0)p(1',0)l. Here the c's
are the Fermi operators of the U Hubbard model
(Pd is the Gutzwiller projection operator). It should be
mentioned that the purpose of this somewhat elaborate
derivation of the t-J model is to stress the fact (implicit
in Ref. 6) that the energy cost of breaking one of the
singlets (i.e., unsublimating the oxygen hole spin) is
—8xp(0.0)/p(1, 0) times the eA'ective hopping, which
in turn cannot be logically allowed to be smaller than J,„
in this scheme. The scheme generates second-neighbor
hops as well with t' [p(2,0)/p(1, 0)]t,tr, etc.

We now turn to the calculation of the Fermi contact
term in the model. The basic hypothesis is that the elec-
tron-nuclear interaction term is [ao—= (8n/3) ( y4, (0) (

x y„gpss and po-(8x/3) I @3'(o) I'yngpa~l

+H.c. , (8)

H, = —2V(4s ( 3d)g—(ak+k~+ H.c.)(cosk~ —cosk ),
k

(9)
and

—(2i) V(3s ( 3d)gs„(bkt+k H.c.) . —(10)

Here V(4s (2p) and V(4s (3d) are the Cu-4s-0-2p and
Cu-4s-next-neighbor-Cu-3d overlaps and V(3s ( 3d) is
the 0-3s-Cu-3d overlap. In addition to these, we add
e, (0)gbk bk +e, (C u) gap~ k to the full Hamiltoni-
an. These three hybridization terms arise by writing the
possible overlaps in the sense of Refs. 6 and 7, and
rewriting in k space using the canonical fermions a and
P. We now use the small ratios V(4s ( 2p )/[ep—t., (Cu)], etc. , as expansion parameters to leading or-
der. First we ignore the coupling of a's to P's in (8)
since the P's are the passive orbitals. The calculation is
illustrated in the case of H, ' . We first hybridize a's and
a's at a fixed k value from Eq. (8) and the site energies
of a's and a's [i.e., e, (Cu) and ep] to find two new
canonical fermions called a and a (which are a- and a-
like for small mixing). We may invert the relation and
to lowest order find

2V(4 (2p)
ak ak —,, (s„—s~ ) aq

and the 0 3s wave function at the respective nuclei and
a, b are the corresponding field operators. The case of
Cu(2) was considered previously by Mila and Rice and
the case of 0(2) is new. In the electron picture, these
(4s and 3s, respectively) s orbitals are the ones closest to
the Fermi level with the correct symmetry to mix with
the active orbitals, and the lower ones (i.e., Cu 3s, 2s, ls,
and 0 2s, ls) are unable to contribute to the Fermi term
due to the Pauli principle (they do so to the core polar-
ization terms which are expected to be smaller in magni-
tude).

These orbitals a and b are, in the hole picture, doubly
occupied and placed at a deeper energy, e', (Cu) and
e, (0), respectively. These have nontrivial dynamics only
because of the hybridization with the active orbitals,
which we now write down directly in k space:

H, ' = —2V(4s (2p)—gak [(s„—s~ )ak +(2s s~)Pk ]/pk
k

Here y4, (0) and y3, (0) refer to the Cu 4s wave function The levels a are now assumed to be inert (i.e., doubly oc-
12S9
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Here 6 is the nearest-neighbor vector, and the constants
are

a~ ap[V(4s
~ 2p)/[ez —e, (Cu)]} &,

a2 4ap[V(4s
~
3d)/led e, (Cu)]}

and

a3 Pp[V(3s
~
3d)/[fd, e( 0)]}

with

A 't -=(cosk„(cosk„ —cosk~)/pk),

the bracket denoting average over the Brillouin zone. To
make contact with Ref. 7, we note that the second term
in Eq. (12) is of the same nature as the one found by the
authors; however, they do not have the analog of the first
term (i.e., the coefficient of a~). All of these terms rep-
resent "transferred hyperfine couplings, " in the sense
that every nucleus senses the spins on neighboring sites.

In order to proceed further, we note that within the t-J
model, the oxygen hole spins are exhausted by singlet
formation (i.e., o's are not available as free variables)
and hence the effective coupling is exactly as in Eqs.
(12) and (13) except that the term multiplying a& should
be ignored.

We next note that the relaxation rates obtained from
these terms follow from standard arguments and lead to

and

1 Jq (cop)a: ks TP (cosq„+ cosq~ )
T1 ( ) q GOp

(14)

1
cL ks Tg (1+cosq„) .

Zq'(tpp)

o(2) q COp
(is)

Here g~ (cop) is the imaginary part of the t-J-model spin
susceptibility at nuclear frequency cop (assumed to be
very small). The two rates thus differ in the two form
factors multiplying the susceptibility.

We first consider the insulating case, where it is clear
from considerable neutron scattering data that the para-
magnetic state (T)T~) possesses considerable 2D
correlations described by a long correlation length driv-
ing the dynamics. The o.-model analysis of Refs. 11 and
12 gives a detailed description of the paramagnetic phase
that is assumed to be governed by a zero-temperature
critical point. The dynamical scaling hypothesis' says
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cupied), and hence dropped, and the distinction between
a and a ignored in the mixing Hamiltonian H2 to lowest
order. This leads to the effective Hamiltonian that we
write down finally (truncating various terms to their
leading nonvanishing orders),

H, „(Cu(2) ) a~ g 2 a„ I„+q+a2+ S„ i„yg, (12)
r, 8 r, b

H, „(O(2)) a g J„„-t (S„+S„„-). (13)

that in the scaling regime, the relevant susceptibility
given by g~ (top)/+top g~/I ~, where I ~ is some charac-
teristic frequency, has a singular term g~ —g "f(qg)
and 1 ~

' =g'h(qg), where q is the wave vector relative
to the dominant value of q =(tt, tr), f and h are appropri-
ate scaling functions, g is the anomalous dimension, and
z is the dynamical critical exponent (z =1 in the present
case, Refs. 12 and 13). It is clear from the form factors
in (14) and (15) that the behavior is very different since
in the proximity of (x,n) the function cosq„+cosq~——2 whereas cosq +1——

q g2. The second-degree
node of the oxygen form factor leads, via standard argu-
ments (as in Ref. 13), to the following prediction:

hatt

A' (i6)

i (fg,"( )/ ),ST =lim-
[gp(0) ] ' (i7)

where fq is the form factor normalized to unity at q =0.
S is akin to the Korringa ratio and equals unity (for
T«TF) in ideal metals. Although S(T) is not usually
discussed in insulating systems, it is instructive to com-
pute it within the simple scheme indicated above. We
find Sc„varying by several orders of magnitude [Sc„—(2/tr ) 't [exp(tr/2t )]/(1 —t ) 't for t ~ 0.5}, whereas
So is slowly varying around unity (So—1.11+0.67t for
t ~ 0.5).

The more elaborate scaling theory in Refs. 11 and 12
would lead to qualitatively similar results but with
different values for exponents, etc. We will not attempt
to present these details at this stage. It would be in-
teresting to look for such differences in the insulating
materials above the 30 ordering temperatures.

With zg„ 1, this implies that the momentum-space in-
tegral involved' in evaluating 1/T&/oxygen is conver-
gent, and hence we should expect a striking difference
between the behavior of the relaxation rates in Cu(2)
and O(2) in this case. As an oversimplified but explicit
functional form, one may take a classical spherical mod-
el to describe the susceptibility as

gq =(ksT) Cq = [g, '+2Jyq+4J]

where yq
=—cosqx+ cosq~ The staggered susceptibility g,

is obtained by using the sum rule (C~)~ = —,
' S(S+1)

and goes at low temperature as g, —(1/32J)
&exp(xJp). The characteristic frequency may be crude-
ly estimated' as 1 z

—(4'(rp )z)'t, where the second
moment is

(cp2)z =J2(2 —yz)(2+x /2 —2t)(2+x /2+yz),

with x =g, 'J ' and t=kgT/J. This leads to a 1/T~
relaxation rate for Cu(2) that is proportional to Tg, with

g —g,'t —e ~t, and hence diverging at low temperature,
but a rate for O(2) that is essentially proportional to
k&T. A quantitative measure of the spin Auctuations is
provided by an interesting dimensionless ratio defined as
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Turning to the doped cases, such as YBa2Cui07, the
present scheme should, in principle, be applicable provid-
ed the dynamical susceptibility gq' is calculated within
the t-J model, i.e., provided the spin fluctuations are re-
laxed by exchange terms as well as by hole hopping
terms. In the absence of a reliable detailed calculation
of g", it seems worthwhile to invert the question, and to
ask whether the relaxation data could be used to infer
some property of the spin relaxation, at least phenome-
nologically. In order to do so, we are tempted to make
an extra hypothesis, that spin fluctuations continue to be
dominated by a single "long" correlation length, and
that the susceptibility is maximum at some value of the
wave vector Qo. We emphasize that such an Ansatz is

not a priori justifiable since there is no compelling exper-
imental or theoretical reason to believe in a magnetic
critical point in any physical temperature in the doped
cases. However, the resulting picture is suggestive and
the analysis may be regarded as heuristic asymptotic be-
havior.

Assuming that a long correlation length dominates the
spin response, we now attempt to reconcile the data'
with our rate formulas. First, the marked departure
from Korringa linearity (with respect to T) of the Cu(2)
relaxation and the linear relaxation of O(2) can only be
understood in this framework provided the wave vector

Qo is not too far from (tr, tr); specifically, if we assume

) Qo —(tr, tr)
~ g is of order unity then the suppression of

the O(2) relaxation continues to hold. Second, if the
Cu(2) relaxation rate is fitted by I/T~ cL Tg~ (with an
expectation p-I) then we find that the temperature
dependence of the correlation length required is
—gf [T~/(T+ 300 K)] ' in order to fit the data of Refs.
1 and 2 on YBa2Cus07 with go and T~ undetermined by
the fit. This form suggests that the Cu(2) rate may be
regarded as crossing over from a linear to a sublinear be-
havior roughly around —150 K. The appearance of the
characteristic temperature (300 K) cutting off the zero-
temperature divergence has a possible interpretation' '
in terms of the hole kinetic energy removing the most
singular antiferromagnetic fluctuations. The internal
consistency of the argument would require the correla-
tion length to be of the order of at least 10 A.

Third, we should note that the normalized relaxation
rates of Cu(2) and O(2), as in Eq. (17), should be nu-

merically quite different, with Cu(2) considerably larger
[since the integrand is large for q —(tr, tr)]. The identi-
cal temperature dependence of Cu and 0 rates in the su-

perconducting state would then imply that the suscepti-
bility does not have a residual peak near (tr, tr) in the su-

perconducting state.
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