Lower Bound on Axigluon Mass from Electron-Positron Annihilation

Frank Cuypers and Paul H. Frampton

Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27599-3255 (Received 7 April 1989)

We compute the cross-section ratio R in e^+e^- scattering in chiral color theory and provide a new lower limit on the axigluon mass of 65 GeV if $\Lambda_{QCD} = 100$ MeV, or 100 GeV if $\Lambda_{QCD} = 200$ MeV.

PACS numbers: 14.80.Er, 13.65.+i

Gauge theories have been successful in describing a diversity of phenomena ranging from strong and electroweak forces to condensed-matter phenomena. It is generally believed in the nuclear- and particle-physics communities that the quantum chromodynamics (QCD) theory of quarks and gluons is acceptable as a basic theory underlying the nuclear force. It is still important, however, to investigate whether there are further elementary particles, beyond quarks and gluons, in the atomic nucleus, playing a key role in the strong interaction.

A recent alternative to QCD, chiral color theory,¹ predicts the existence of a color octet of massive axigluons, corresponding to the broken generators of the $SU(3)_L$ $\times SU(3)_R$ chiral color gauge group. At the Fermi mass this symmetry spontaneously breaks down to the familiar $SU(3)_{QCD}$. Several mass bounds have been set on the axigluon,^{2,3} and two possible windows are left: from 25 to 125 GeV and above 275 GeV.

This Letter investigates the possibility of discovering the axigluon, or setting a better lower bound for its mass, by studying its influence on radiative corrections to the hadronic normalized cross section in e^+e^- scattering:

$$R = \frac{\sigma(e^+e^- \to \gamma^*, Z^{0*} \to \text{hadrons})}{e^4/12\pi s}, \qquad (1)$$

where e is the charge of the electron and s is the $e^+e^$ beam energy squared. We shall set all quark masses equal to zero in our calculations, which is a good approximations below the top-quark threshold.

The first-order axigluon Feynman diagrams contributing to the hadron production in e^+e^- collisions are shown in Fig. 1. Diagrams (a) and (b) produce two-jet events and their interference gives rise to the cross section

$$\sigma_2 = |(\mathbf{a}) + (\mathbf{b})|^2 = \frac{e^4}{12\pi s} \left(3\sum_{\text{flavors}} \Gamma_f \right) \left(1 + \frac{\alpha}{\pi} L + O(\alpha^2) \right),$$
(2)

where α is the strong coupling and L is a function of \sqrt{s}/M , M being the mass of the axigluon. Obviously L=0 when $\sqrt{s}/M=0$. The argument in the sum over quark flavors, Γ_{ℓ} , represents the photon channel, the Z^0

channel, and their interference. It is given by

$$\Gamma_f = Q_f^2 + \frac{(v_e + a_e)^2 (v_f + a_f)^2 s^2 - 2v_e v_f Q_f s(s - m_Z^2)}{(s - m_Z^2)^2 + m_Z^2 \Gamma_Z^2},$$
(3)

where Q_f is the quark electric charge, m_Z and Γ_Z are the mass and decay width of the Z^0 , and v and a are the vector and axial-vector couplings of the Z^0 to the electron or quark. It is essential to realize that, as for QCD, in the limit where the quark masses are set to zero, the photon and Z^0 contributions enter, at this order, as completely separate terms.

Diagrams (c) and (d) originate the three-jet events, and their interference yields the cross section

$$\sigma_3 = |(\mathbf{c}) + (\mathbf{d})|^2 = \frac{e^4}{12\pi s} \left(3 \sum_{\text{flavors}} \Gamma_f \right) \left(\frac{\alpha}{\pi} T \right), \quad (4)$$

where T is also a function of \sqrt{s}/M . Obviously $T \ge 0$ when $\sqrt{s} \ge M$.

In order to describe the total cross section for hadron production, we must also consider QCD diagrams similar

FIG. 1. Feynman diagrams. Straight lines are fermions, dashed lines are Z^{0*} s, curved lines are photons, and jagged lines are axigluons.

© 1989 The American Physical Society

to graphs (b), (c), and (d), with axigluons replaced by gluons. To first order in α , these diagrams remain uncoupled from the previous ones. The gluonic contribution is given by⁴

$$\sigma_{\rm gluon} = \frac{e^4}{12\pi s} \left(3\sum_{\rm flavors} \Gamma_f \right) \left(\frac{\alpha}{\pi} \right), \tag{5}$$

so that the total-cross-section ratio R is given by

$$R = \left(3\sum_{\text{flavors}} \Gamma_f\right) \left[1 + \frac{\alpha}{\pi}(1+f) + O(\alpha^2)\right], \quad (6)$$

where

$$f(\sqrt{s}/M) = L + T . \tag{7}$$

FIG. 2. Plot of L and T from Eqs. (8) and (10).

It turns out that L and T are separately infrared divergent in the limit where $\sqrt{s}/M = \infty$.⁵ This is due to the fact that in this limit the axigluon can be soft, and the quark propagator can go on mass shell. Nevertheless, the sum f = L + T always remains finite⁶ and goes to 1 when $\sqrt{s}/M = \infty$, because in this limit there is no difference between gluons and axigluons. This behavior of L and T is shown in Fig. 2.

The two-jet events contribution is given by the integral over Feynman parameters

$$L = \frac{8}{3} \int_0^1 dx \int_0^{1-x} dy \left[\ln \left[1 + \frac{s}{M^2} \frac{xy}{x+y-1} \right] + \frac{s(1-x)(1-y)}{sxy+M^2(x+y-1)} \right].$$
(8)

This integral has a closed form, provided we make use of the Spence function⁷

$$\int dt \, \frac{\ln(t-1)}{t} = \frac{1}{2} \ln^2(t) + \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} \left(\frac{-1}{t}\right)^n.$$
(9)

The three-jet events contribution is given by the phase-space integral

$$T = \frac{2}{s^2} \int_{M}^{(s+M^2)/2s} dx \int_{M}^{E_G} dy \frac{X}{2(s-M^2)^{1/2}} (\text{leptonic current})_{\mu\nu} (\text{hadronic current})^{\mu\nu}, \qquad (10)$$

where

 E_G = axigluon energy,

$$X = [(\sqrt{s} - 2E_1)(\sqrt{s} - 2E_2)]^{1/2},$$
(11)

 $E_1(E_2) =$ quark (antiquark) energies.

This integral can be computed in closed form if we use⁷

$$\int dt \, \frac{\ln[t+(t^2-1)^{1/2}]}{t} = \frac{1}{2} \ln^2(2t) + \sum_{n=1}^{\infty} \frac{(2n-1)!!}{(2n-2)!!(2n)^3} \left(\frac{1}{t}\right)^{2n}.$$
(12)

The detailed behavior of $f(\sqrt{s}/M)$ is shown in Fig. 3. As the axigluon behaves like a massive gluon (for massless quarks), f goes to 1 when $\sqrt{s}/M \rightarrow \infty$.

To compare our result with experiment, we use the following value of $\alpha_s(\sqrt{s})$, which has been obtained from a wide range of R measurements:⁸

$$\alpha_s(34 \,\text{GeV}) = 0.165 \pm 0.030\,. \tag{13}$$

In chiral color, as shown in Eq. (6), this result has to be reinterpreted as

$$(1+f)\alpha_s(34 \text{ GeV}) = 0.165 \pm 0.030$$
, (14)

and, using the second-order result of the renormalization-group equations, we find

$$f\left(\frac{34 \text{ GeV}}{M}\right) = (0.165 \pm 0.030) \frac{23 \ln(34 \text{ GeV}/\Lambda_{\rm QCD})}{6\pi \left[1 - \frac{174}{529} \ln 2 \ln(34 \text{ GeV}/\Lambda_{\rm QCD})/\ln(34 \text{ GeV}/\Lambda_{\rm QCD})\right]} - 1.$$
(15)

FIG. 3. Detailed behavior of f = L + T (see also Fig. 2).

If one takes $\Lambda_{QCD} = 200$ MeV, according to (15), f should be below 0.21, which, by examining Fig. 3, yields a minimum admissible value for M of ~ 100 GeV. In the case where $\Lambda_{QCD} = 100$ GeV, the value of f has to be below 0.35, and accordingly the lower bound for M is ~ 65 GeV.

We should note that our analysis is somewhat crude since it is based on the estimate (13) from Ref. 8. This estimate is the result of a fitting to the data on R over a range of energies and from different experiments. A more accurate analysis would require a full refitting of all the experimental data using chiral color from the outset. Our results indicate, however, that e^+e^- annihilation provides a better lower bound on the axigluon mass than any obtained previously, for example, from upsilon decay. We expect that a complete analysis of the e^+e^- data will yield results qualitatively similar to those we have obtained.

This work was supported in part by the U.S. Department of Energy under Grant No. DE-FG05-85ER-40219.

¹P. H. Frampton and S. L. Glashow, Phys. Lett. B **190**, 157 (1987); Phys. Rev. Lett. **58**, 2168 (1987).

 2 M. A. Doncheski, H. Grotch, and R. W. Robinett, Phys. Rev. D **38**, 412 (1988).

³J. Bagger, C. Schmidt, and S. King, Phys. Rev. D **37**, 1188 (1988).

⁴T. Appelquist and H. Georgi, Phys. Rev. D 8, 4000 (1973); A. Zee, Phys. Rev. D 8, 4038 (1973).

 $^5 G.$ Sterman and S. Weinberg, Phys. Rev. Lett. **29**, 1436 (1977).

⁶T. Kinoshita, J. Math. Phys. **3**, 650 (1962); T. D. Lee and M. Nauenberg, Phys. Rev. **133**, B1549 (1964).

⁷A. P. Pridnikov, Yu. A. Brychkov, and O. I. Marichev, *Integrals and Series* (Gordon and Breach, New York, 1987).

 8 W. de Boer, SLAC Report No. SLAC-PUB-4428, 1987 (to be published); Proceedings of the Tenth Warsaw Symposium on Elementary Particle Physics, Kazimierz, Poland, 25–29 May 1987 (to be published).