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Interactions and Dynamics of Topological Defects: Theory and Experiments
near the Onset of Weak Turbulence
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The dynamics of a single topological defect and the interaction between pairs, including the process of
annihilation of defects of opposite topological charge, are studied experimentally and theoretically near
the onset of weak turbulence in Williams domains of electroconvecting nematics. The existence of topo-
logical defects requires a gauge-field theoretical treatment, enriching the commonly used "amplitude
equations. " The gauge field carries the interaction which is found to be of finite range in agreement with
detailed observations.

PACS numbers: 47.25.—c

Low-dimensional chaos appears in physical systems
that are sufficiently constrained' to maintain spatial
coherence in spite of the loss of temporal order. Small-
aspect-ratio convecting systems, and efficiently stirred
chemical reactors, are examples. In less constrained
cases like large-aspect-ratio convecting systems, spatial
coherence is lost concurrently with the onset of chaos,
typically by the appearance of defects, whose complex
dynamics carries much of the interesting time depen-
dence. This regime of motion has been termed "spatio-
temporal chaos, ""weak turbulence, "etc.

The understanding of this type of turbulence calls for
the elucidation of the interactions and motion of topolog-
ical defects. In this Letter we report a joint experimen-
tal and theoretical attempt to reach such a goal near the
onset of weak turbulence in electrodynamic convection in
liquid crystals.

The choice of a thin layer of nematic for this study is
motivated by both experimental and theoretical con-
siderations. Experimentally a treatment of the top and
bottom boundaries allows the achievement of a perfectly
ordered Williams domain even in samples of very large
aspect ratio. This experiment employed N- (p-meth-
oxybenzylidine)-p-butylaniline (MBBA) confined be-
tween transparent electrodes of dimensions 3X0.7 cm .
The thickness of the layer was 15 pm, leading to about
2000 convection rolls. The fact that the molecules are
anchored at the treated boundaries leads to a selection of
a unique orientation of the convection rolls. Compared
to isotropic fiuids this leads to a simpler dynamical
description ("amplitude equations") in the absence of to-
pological defects. The needed modifications in the pres-
ence of defects are thus based on a simpler starting
point.

Convection in this fiuid is driven by an ac field of fre-
quency m across the layer. The control parameters are co

and e, where e (V —V, )/V, with V the amplitude of
the potential and V, its threshold value for the onset of
convection. All measurements were taken at a fixed
value of m, i.e., co 114 Hz. The periodicity of the con-

vection pattern depends on the driving frequency, and
this was used in the experimental procedure employed to
investigate the dynamics of the defects: For a given fre-
quency ro, e is raised to a value such that many defect
pairs are formed in the system. After relaxation to a
state with only a few defects, and a wave vector q(c0)
consistent with the frequency ro, the system was rapidly
quenched back to ro ro and a chosen value of e, con-
sistent with an equilibrium wave vector q(c0 ), thus
creating a wave-vector mismatch k q (co) —

q (ca*).
The motion of the defects on their way to pairwise an-
nihilation was followed. For quantitative measurements,
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FIG. l. (a) A shadowgraph (Ref. 11) of a Williams domain
in a nematic with two defects of opposite topological charges.
(h) A plot of the lines ImA 0 (closed loop) and ReA 0
(open curves) for the picture in (a). The points of crossing are
the defect cores.
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the exact location of the defects is needed. In standard
shadowgraphs the image is formed by the field of index
of refraction n(x, t), which can be represented as n(x, t)

A(x, t)exp(iq x) where A is a complex amplitude,
which vanishes at the defect core. We digitize the sha-
dowgraph, perform a fast-Fourier transform (FFT), shift
the spectrum such that its major peak moves to q=0,
and transform back to real space. Plotting then the two
curves ReA-0 and ImA 0, every intersection of these
pinpoints a defect core. In Fig. 1 we show two topologi-
cal defects using a standard shadowgraph and the tech-
nique discussed here. This technique allows pinpointing
the core with a resolution of the order of + 1 pm.

In Figs. 2(a)-2(c) we show three typical plots of dis-
tance versus time of pairs of defects on their way to an-
nihilation, measured this way, for three values of e. The
essential features to be noticed are as follows: (i) There
exists a regime of constant relative velocity v, of the de-
fects; (ii) there exists a crossover distance R below
which the motion accelerates; and (iii) the crossover dis-
tance R* depends on v, . In Fig. 3 it is shown that R is
linear in 1/v, .
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We stress that the motion includes both "climb" and
"glide;" Fig. 2(d) displays predominantly glide motion in

which pinning eA'ects which are tied to nonadiabatic
eff'ects are apparent.

In trying to understand these results we were motivat-
ed to develop a novel approach, as outlined next.

In the absence of defects one writes ' for any physical
quantity y(r, t) that vanishes at @=0,

1Ir(r, t) -Re[@' g(X, Y, T)exP(iq, q x)fv(z, t)],
where q,q is a 2D wave vector that sets the scale of the
cellular convection, f„lumps all the perpendicular direc-
tion and fast time dependences, and the amplitude g is
declared to be the only slowly varying (complex) field in
the system, depiending on the scaled space and time coor-
dinates L e' x, Y e' y, and T=et. The equation of
motion for g is well known and for normal rolls takes on
the form

The parameters can be computed from the underlying
nematodynamics. Rescaling according to t =T/ Tp,

x A'/(1, y Y/g2, and g'= JPg, we get (dropping the
prime)

which is the well-known time-dependent Ginzburg-Lan-
dau equation. This equation can be written in terms of a
variational principle of the functional If =JdxIy(x),
where

(2)

Obviously, Eqs. (1) and (2) are invariant to the global
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FIG. 2. Distances between two topological defects on their
way to annihilation as a function of time. (a)-(c) The motion
is both parallel and perpendicular to the roll axis ("climb" and
"glide" ), but predominantly climb. The continuous line is not
a fit but the result of the theoretical calculation. The data per-
tain to e values of 0.021, 0.033, and 0.08, respectively, and k
values of 0.0056, 0.0064, and 0.0077 pm ', respectively. (d)
The motion is predominantly glide; notice the pinning effect
that is due to the underlying roll structure.
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FIG. 3. The crossover distance R* as a function of I/v, . In-
set: The interaction length k as a function of I/Je. The length
X was obtained from the curves of distance vs time in an an-
nihilation process. The values of R* were obtained by Atting a
straight line and a parabolic curve to the short- and long-time
portions of the data of Fig. 2, respectively, and reading R*
from the discontinuity.
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gauge transformation g= IgIe' I@Ie' +~. Indeed,
topological defects can be understood in terms of the
mapping from a large circle around the defect to dif-
ferent e(x) values in the space of degenerate vacuum
solutions of Eq. (1). The defects seen in our experiment

satisfy the relation Ve ~ 2z, where the opposite
signs pertain to opposite topological charges. This rela-
tion indicates that e is unde6ned at the core, whereas
VxVe diverges there like 2~8(x)z, where z is the unit
vector in the z direction. The main point, however,
comes next, when we argue that in the presence of de-
fects there may exist another conserved (slow) quantity
which has to be coupled to the field g. Consider the local
k vector k(x) Ve(x) (k q

—q,q). In the absence of
defects Vxk 0. In the presence of defects Vxk&0. In
that case we rewrite k(x) as

k(x) -Ve(x) —A(x), (3)

where A is a gauge field. Here we have split k into a
part that has only a singular curl (i.e., VxVe) and a
part that possesses a nonsingular curl, defined as

B(x) VxA. (4)

Anywhere but at the center of the defect Vxk-Vx A.
Using three-vector notation in this two-dimensional
problem, B (O, O,B), A (A„,A~, O). By defining
E (E„,E~,O) according to E —8,A, we get the topo-
logical conservation law

Q, B —VxE. (5)

Id g( —,
' 8 —B M), (6)

where g is a coupling constant and M is a pseudovector
field M (O, O, M), having the same signature under par-
ity as S. The only pseudovector at our disposal is kxx,

B is proportional to the density of defects, Ex i is its
current, and Eq. (5) means that B is an independent
slow variable that has to be coupled to g. Notice that
Eq. (5) is independent of the nature of the amplitude
equation (1), and is an independent construct of the
theory. Also B is not multiplied by e''i', meaning that it
can be a large-scale field of the type considered in Refs.
5(b) and 7. The physics of these new fields has to do
presumably with the interplay between the director of
the nematic and flow velocities in the x-y plane. The
latter cannot be assumed to be proportional to gradients
of scalars as in Rayleigh-Benard convection.

Before coupling, notice that B is invariant to a local
gauge transformation A(x)~ A(x)+Va(x). In addi-
tion, the change of k Ve into Eq. (3) suggests that
after coupling B to g all the derivatives should become
covariant, i.e., Vg~ Dg =—(V —i A)g

The coupled functional I,=fdxI, (x) is defined there-
fore by I, —I@I + —,

'
I@I + ID@I +Id, where Id

stands for the part proportional to B. Symmetry and to-
pology considerations lead to the following form for Id..

and it will indeed follow from consistency requirements
on the equations of motion that M is proportional to
gxx.

The equations of motion are found now by varying I,
with respect to g, g, and A. The result of this pro-
cedure is

~ z-(D D+I —Izl')z, (7a)

a 8,A J —gVxH, (7b)

2 I z I' 2(1 —k') (10)

We thus see that M vanishes only in the unstressed cellu-
lar state where I@I -1.

(ii) For a single stationary defect on an unstressed
background (k 0) the field B satisfies the London equa-
tion B+X VxVxB 2~8(x)i or B(x) —(I/A, )Ko(x/
X)z, where Ko is the modi6ed Bessel function of order
zero. For such B we find that

k-Ve A-(I/~—)K, (x/~)i -(~'/g) J,
where 8 is a unit vector perpendicular to x. We note
that at this level the solution for B is identical to that of
a magnetic field of a magnetic fiux line in a superconduc-
tor of type II without external magnetic field. J is the
analog of the supercurrent around it, and it goes to zero
exponentially for distances much larger than A, . Also
A Ve far from the defect.

(iii) In a stressed background field we split the vector
k into a defect contribution k and a background part k.
For k&0 there is a force on a single defect, and it moves
with a constant velocity v„which is determined by a mo-
bility tensor. In the adiabatic approximation (i.e.,
cr((1) we solve for the mobility tensor y, and find a per-
fectly finite solution,

y=2~IgI'[In(~ig)+ —.
' ~e 'll, (12)

where g is the size of the defect core, and 1 is the unit
tensor.

To calculate the velocity we need the force. The force
F, acting on a defect due to a background is calculated

where H —=B—M and

J-ig(Dg) +c.c. 2 Ig I [Ve —A] .

o is a typical time scale for the gauge field.
The detailed solution of this gauge-field theory is

presented elsewhere. Here we only summarize the re-
sults, and tie them to the experiment.

(i) In the absence of topological defects we find that
I@I 1 —k and B-0. Qn the other hand, we find that
M(x) satis6es the expected relation

M(x) - —(I/X')(I —Ig I') '~'kxx,
fL

where k k/k and X is an important length scale in our
theory,
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FIG. 4. The constant velocity of an isolated defect as a
function of the wave-vector mismatch k. Squares: a=0.06.
Triangles: e 0.03.
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(iv) Defects interact via a force directed along the in-
terdefect separation vector R. Leaving one defect at the
origin of the coordinates we calculate the interaction
force Ft(R) and find

Ft(R) (2&//A )K&(R/k)R. (is)
This force depends on R like 1/R for R (A, and like
(1/JR )e " foi R & ) .

These theoretical findings are in very good agreement
with the experimental facts reported before. First, we
expect that for distances R & k the defects would hardly
interact, and their constant velocity (cf. Fig. 2) should
satisfy Eq. (14). To test this explicitly we display in Fig.
4 the experimental plot of v, vs k. k is measured from
the FFT of the digitized picture with the defects, and
from q,q(to, e) that is measured in a separate experi-
ment. The agreement with Eq. (14) is obvious. More-
over, from the slop of Fig. 4 we can extract the only pa-
rameter of the theory, i.e., g, which is found to be /=83,
which determines X=6.5$. Thus, the rest of the com-
parisons between the theory and the experiment will

by finding the gradient of the functional I, with respect
to the position of the defect. The result is

F, = (2ttg/X )kxi (2ttg/X )(Ve —A) xz=Jx2tti,

(i3)
where J is the current (8) due to the background. The
part of the force proportional to Ve&z is known as the
Peach-Kohler force. This by itself is not the correct
force, as was pointed out erst in Ref. 10.

The velocity of a single defect is obtained by equating
F, to 7 v, . The magnitude of the constant velocity is
predicted to be

have no free parameter.
We expect that the motion will begin to accelerate

only when FI becomes comparable to F,. This happens
at an R value which solves the equation k/X -Ki(R*/
k)/A, . Using the form K~(R/1) -A, /R for R (k, we find
R = 1/k. In the light of the linearity of v, in k, we un-
derstand the finding displayed in Fig. 3. Finally, the de-
tailed trajectories R vs t can be found by solving the
equation y R-F, +Ft(R). This equation is solved in
scaled coordinates. To compare with the laboratory
plots we have to rescale to real coordinates. The param-
eters used are zn-0. 075 sec, gi/(2=2. 2, and (2=2.2
pm, and were taken from separate experiments which
will be reported in detail elsewhere. The results of this
calculation, which at this point has no free parameter,
are shown as the continuous lines in Fig. 2. The agree-
ment should be interpreted as a strong confirmation of
the theory sketched above. As a final test we examined
the scaling of X with e. The inset in Fig. 3 shows that X

is linear in 1/Je as predicted.
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