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The distribution of local Lyapunov exponents is used to analyze power spectra of conservative dynami-
cal systems. It is shown that sharp and broad peaks in the spectra can be related to well defined regions
in phase space, associated with algebraic and exponential stretching of distances, respectively.
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Spectra of highly excited atomic and molecular sys-
tems have been measured in some detail in the past
years. Examples are the quadratic Zeeman effect
(QZE) for the hydrogen atom in a strong magnetic
field,! the photodissociation spectrum of the H3* molec-
ular ion,? and the stimulated emission pumping spectra
of acetylene® and Nas.* In all cases, coarse graining of
the experimental high-resolution spectrum yields a low-
resolution spectrum with distinct regularities such as
equally spaced broadened peaks. The classical dynamics
of these systems is mostly chaotic. A detailed quantum-
mechanical analysis of the QZE has shown 1®) that many
features of the low-resolution spectrum can be related to
unstable classical periodic orbits. A full quantum-
mechanical investigation of molecules such as H;% or
Naj is prohibitive. Studies of the classical-mechanical
spectra of these systems have shown structures which are
in close agreement with experimental observations.
There are numerical indications that the peaks are asso-
ciated with the presence of “q) asiregular” (laminar)
motion in the chaotic signals.l(c 4 Here we mention a
recent study® on Ar; clusters where a qualitative correla-
tion, in a high-dimensional system, is made between a
drop in the K entropy (as energy is increased) and an en-
larged fraction of quasiregular and chaotic motion.
However, a general theory does not exist.

Power spectra or correlation functions have been in-
vestigated for simple dissipative systems, such as one-
dimensional piecewise-linear maps, or in connection with
particular phenomena such as period doubling, intermit-
tency, and “periodic chaos” (see Refs. 6 and 7 and refer-
ences therein). The analysis of conservative systems has
mainly focused on the long-time behavior of correlation
functions® which exhibit, in many cases, a power-law de-
cay® (corresponding to low-frequency noise of the 1/f
type in the spectra'®). The asymptotic behavior of corre-
lation functions for a certain class of hyperbolic dynami-
cal systems (either dissipative or conservative) has been
recently explained in terms of generalized Lyapunov ex-
ponents.7 In general, however, very few results are avail-
able about relations between the “ordered” part of power
spectra (i.e., the resonances) and dynamical invariants
such as Lyapunov exponents or metric entropies.

It is known that the power spectrum of hyperbolic (ax-

iom A) dynamical systems is a meromorphic function in
a strip of the complex plane.!' The position of the poles
(resonance) depends on the system under consideration
and, according to it, the asymptotic decay of the correla-
tion function C(¢) may be exponential or not. Moreover,
C(t) is modulated if the poles are not purely imaginary:
In Ref. 12 this effect has been related to the possibility
of dividing the time signal x(¢) into consecutive time in-
tervals with approximately independent behavior. This
approach was especially effective in describing systems
exhibiting type-I intermittency, where an alternation of
laminar phases and chaotic bursts occurs. The trajectory
almost locks on a period for a long time, thus contribut-
ing a well defined frequency to the spectrum; then it
enters a shorter, highly chaotic, phase before being rein-
jected into the regular one. The mean rejection time is
related to a second, low-frequency, component.

In the present work we provide a method for the
decomposition of power spectra in conservative dynami-
cal systems, based on the analysis of local (effective)
Lyapunov exponents.'> The spectra are shown to consist
of a “regular” part, characterized by very sharp peaks,
corresponding to the motion in the vicinity of the invari-
ant tori, where the divergency of nearby orbits is alge-
braic, and a “purely chaotic” one, exhibiting broadened
peaks on a smooth background, corresponding to regions
where the divergence is predominantly exponential. The
decomposition is achieved by evaluating the probability
distribution of local Lyapunov exponents'* which, be-
cause of the presence of islands, displays a power-law
correction to the usual exponential behavior.

We consider the standard map'® in the form

Xk +1=x + K siny; (mod2r) ,

)

Yi+1=Xg+1+yx (mod2r),

as a model of the Poincaré section of a typical nonhyper-
bolic Hamiltonian system with two degrees of freedom,
whose phase space is the torus 0=<x,y <2z For
K> K.=0.97, the mapping generates chaotic trajec-
tories that encircle the torus in both directions '® and reg-
ular invariant curves that appear as ‘“‘islands” in phase
space. In Fig. 1 we show the numerically converged
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FIG. 1. Average power spectrum (solid line) of the standard
map, for K=2, compared with the reconstructed spectrum
(dashed line), obtained from the two A intervals 7{" =[0,0.06]
and 75" =[0.44,0.52]. The averages are computed over 120
runs of 262144 iterates each, with n=256. The spectra are
then compressed by a factor of 512 in frequency and normal-
ized to unit area.

-
to

average power spectrum for the x coordinate at K=2. A
number of very narrow peaks emerge from a smooth
background which seems to present some broadened
peaks. The width of the latter ones is much smaller than
the average Lyapunov exponent of the system (equal to
0.45, for K=2). These features resemble those of highly
excited systems such as the H3™ or the Na; molecules.
The purpose of this Letter is to provide a method which
allows one to distinguish the dynamical origin of this
structure. Our analysis, although illustrated for a simple
case, is general in form and is not limited to two-
dimensional maps or to Hamiltonian systems with two
degrees of freedom.

The first step is to divide a “long” trajectory!’ into in-
tervals of length n and evaluate the (first) local
Lyapunov exponent A, for each of them. Indicating that
d(n) the (infinitesimal) distance between two trajec-
tories at time n, A, is defined by the asymptotic relation
u()=d(n)/d©)~n"e™, for n>1. In the limit
n— oo, A, equals the average Lyapunov exponent (1),
for almost all initial conditions. Chaotic trajectories are
generally characterized by positive values of A,. When,
however, the orbit is close to a regular region, the local
Lyapunov exponent will be very small for long times and
the divergence of nearby points will be described by the
algebraic exponent y,. The two kinds of behavior can be
efficiently distinguished by computing the approximate
local Lyapunov exponent A,=n "'lnu(n) (=2, for
large n). When power-law corrections are not impor-
tant, the probability distribution P(A;n) of local
Lyapunov exponents scales as P(A;n)~e "W, for
n— .4 In this case the asymptotic function ®(A) has
been named the spectrum of (effective) Lyapunov ex-
ponents by Grassberger, Badii, and Politi.'* It has a
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FIG. 2. Spectrum ®,(A) of (approximate) effective

Lyapunov exponents A, for K=2 and n=100, 200, 300, and
400. A histogram, based on 10® runs, with bin size 2.4x 10 72,
1.7%1072, 1.6x1072 and 1.5x1072 respectively, was
smoothed using a standard routine. The values of Pmax(n) are
0.106, 0.114, 0.124, and 0.129 for n =100 to 400, respectively,
found at A =0.479, 0.475, 0.473, and 0.461, respectively.

minimum (equal to zero) at A=(1) and is positive and
finite for A=< Apax (where Apax is the Lyapunov ex-
ponent of the most unstable periodic orbit). In Fig. 2 we
plot the finite-n approximation ®,(A)=—n "'In[P(A;
n)/Pmax(n)], for K=2 and n==100, 200, 300, and 400
[Ppax(n) is the maximum value of P(A;n)]. From the
figure, one can clearly distinguish two qualitatively
different scaling regions of P(A;n) with n. The exponen-
tial scaling law is evident for A= 0.35 and the minimum
of ®,(A) is close to {A). The power-law scaling is more
appropriate for A==0, while a superposition of the two
behaviors occurs at intermediate A values.

A more detailed analysis of the local stretching prop-
erties of the map would require considering the full two-
dimensional distribution P(\,y;n) ~n¥e =™ of alge-
braic and Lyapunov exponents. The relevant informa-
tion during the laminar phase is contained in the spec-
trum w(y). In regions of phase space where A is bound-
ed away from zero only the exponential term ¢(A) sur-
vives [and coincides with ®(A)], for large n. According-
ly, the distribution P(A;n) of approximate Lyapunov ex-
ponents A exhibits the characteristic shape illustrated in
Fig. 2. The regions of different scaling behavior can be
identified by letting n vary. These observations have
been tested for various values of the parameter K, corre-
sponding to largely different numbers of islands in phase
space, and are in agreement with the findings of Ref. 10.

To analyze the spectrum we now consider portions of
trajectory which have a A either in a narrow strip I; of
width 0.06, around the high-probability peak adjacent to
A =0, or in the interval I,=1[0.44,0.52], centered around
(A). The width of the two intervals is prescribed by the
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FIG. 3. Decomposition of the phase space of the standard
map, for K=2. The regions corresponding to 0 <A <0.06
and A € [0.44,0.52] are displayed in (a) and (b), respectively.

half-width of the peaks of P(A;n).!® We then construct
two time series X (I;) (i=1,2) consisting of the vari-
able xx —{x) (k=m, ... ,m+n) if the corresponding A
(computed in the time interval [m,m +n]) belongs to
the interval I;, and equal to zero otherwise. In Fig. 3, we
display the regions of phase space which correspond to
(a) A€, and (b) A € I,, for K=2 and n=100. Chaot-
ic and regular trajectories are clearly identified without
need of any geometrical specification (such as the range
of laminar behavior in 1 —d intermittency). The power
spectra S;(f) of the two signals X{”(I;), evaluated for
n=256, are displayed in Fig. 4 [the area [S;(f)df has
been normalized to 11. The first one contains all the nar-
row peaks of the full spectrum, while the second one
closely resembles the “chaotic”” background. Note the
dominant peaks in Fig. 4(a) at the frequencies of 0.2,
0.4, and 0.5. The first two frequencies come from the
period 5 at the center of the island chain surrounding the
large island. The peak at 0.5 comes from the period 2
orbit at the center. A more detailed analysis of the fre-

1228

()

—4. T T T T ]
.0 .7 2 3
J

FIG. 4. Decomposition of the power spectrum, for K=2:
The partial spectra (a) and (b) are computed for A values in
the same intervals considered in Figs. 3(a) and 3(b). The pa-
rameter n and the number of iterations and averages are the
same as in Fig. 1.

quencies is presented elsewhere.!® In Fig. 1, the sum of
the two partial spectra (dashed line), weighed according
to the respective occurrence probability [w(,)=3.36
%10 72, w(I,) =0.484], is compared with the true spec-
trum (solid line). Good a§reement is obtained, although
the first partial signal X" (1,), which yields the relevant
sharp peaks, has a probability of the order of 10 ™2,

The method proposed in this paper allows the
identification of laminar regions in conservative dynami-
cal systems without need of constructing surfaces of sec-
tion and of partitioning phase space in an arbitrary way.
For highly excited molecular systems, due to their high
dimensionality, it is virtually impossible to determine ap-
propriate Poincaré sections. The present method
achieves a separation of power spectra into sharp and
broadband features by utilizing only the distribution of
local Lyapunov exponents. This can be computed with
sufficient accuracy also in systems with three or more de-
grees of freedom.

This analysis has been successfully applied to a model
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with two degrees of freedom (the Hénon-Heiles poten-
tial) ' and we are in the process of extracting the regions
of laminar flow in the H3;* molecular ion. This tech-
nique will therefore be very effective for a classical-
mechanical interpretation of the coarse-grained spectrum
of excited molecular systems. It also applies to any mod-
el with orbits close to marginal stability, including dissi-
pative intermittent maps. In such a case, the Lyapunov
exponent A can be interpreted as the inverse of the lami-
nar time 7 and the evaluation of P(A;n) is equivalent to
that of the distribution of 7.!2
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