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Defining the Configuration Space of String Field Theory
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We propose a space for bosonic and heterotic string field theories in which all classical vacua are in-
cluded naturally. We also illustrate how space-time emerges. The existence of a new string symmetry
beyond the usual Becchi-Rouet-Stora-Tyutin symmetry is pointed out.
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String theory, in particular, the heterotic string,'
offers the potential of being the ultimate theory of all
forces and matter in nature.? In recent years, many
string models based on the heterotic string theory have
been constructed. Some of them look surprisingly realis-
tic, in terms of the gauge symmetry and chiral fermions.
However, the number of models is numerous and there is
no known reason why a particular model is favored over
any of the rest. In terms of string field theory, these
models correspond to the classical vacua of the heterotic
string field theory. Dynamics of the string field will
hopefully select out the vacuum that describes the world
we live in. Hence a proper formulation of string field
theories is of great importance in unraveling the underly-
ing string symmetry as well as dynamics.

Unfortunately, string field theory as formulated up to
now > is woefully short of this eventual goal. This state-
ment needs some clarification. It is well known that the
covariant closed-string field-theory formulation has en-
countered difficulties. In particular, the covariant
heterotic string field theory is missing. However, even if
the covariant closed-string theory were written down, it
would still be useless in answering the dynamical ques-
tions such as why the theory chooses any particular vac-
uum. This follows from the choice of space upon which
the string field is defined. For simplicity, consider the
closed bosonic string field, ®(X,(z,2),b(z),c(2),b(2),
c(2)), where X, (1=0,1,2,...,25) is the string vari-
able while ¢ (¢) and b (b) are the ghost and the an-
tighost for left (right) movers. To define the string field,
the variables X, are chosen to be the coordinates. How-
ever, this fixes the classical string vacuum to the 26-
dimensional string or one of its toroidal compactifica-
tions. Starting from such a choice, it seems impossible to
explore all the other classical vacua (e.g., left-right
asymmetric models) that we know exist. A proper for-
mulation of a string field theory, in general, entails an
action. To properly define the action, it is necessary to
specify the space in which the strong fields live, i.e., the
coordinates of the string field. It is clearly important, as
a necessary first step, to define the string field in a space
such that all classical vacua emerge naturally; in fact,
these vacua should be on an equal footing before dynam-
ics (i.e., interactions) start to play a role.

In this paper, we propose a configuration space upon
which string fields should be defined. We shall explicitly
construct this space for the closed bosonic string and the
heterotic string field. We shall illustrate, in general, how
the classical vacua emerge. In this formulation, space-
time is a derived concept. Our proposal clearly shows
the existence of a very deep underlying string symmetry.
To start, (super)conformal symmetry is taken to be
essential to the formulation of string field theory. It is
known that a large class of conformal fields can be bo-
sonized,>® e.g., (super)conformal ghosts, all (super)
conformal models in the minimal series as well as W
algebras, which includes parafermions. Our key assump-
tion is that all two-dimensional (super)conformal fields
can be bosonized (actually, the assumption needed is
somewhat weaker; we require only the bosonization of
conformal fields that appear in string theories). We pro-
pose that these bosons are the fundamental coordinates
of string fields. To make the discussion concrete, we
start with a working hypothesis. We shall comment on it
later.

Let us concentrate for the moment on the closed bo-
sonic string. We introduce 51 chiral bosons*® (the
reason for the number 51 will be explained later):

T(z) _Znij(_ é—a¢Lia¢L,+iaL,~62¢Lj) , 1)
ij

where the diagonal metric is Minkowskian, n=(—1,1,
1,...,1). The central charge of ¢,; is cr;=1
—1277jjafj, where j=0,1,2,...,50. The total central
charge of this set must be 26,
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where a;; are real. The constraint Eq. (3) assures that
cLo=1 and the rest ¢,; < 1. Here (¢;(z)¢;(w))=—rn;;
xIn(z—w). Let us introduce a similar set of 51 right-
moving chiral bosons ¢g;(z). Denote a=(a.,ar)
=(a;0,QL1, . ..,0R0,CAR1],. -.). Now we can define the
string field in terms of these chiral bosons and the bc
ghosts, ®(¢.,¢ri,b,c,b,c). Of course, the bc ghosts can
be bosonized in the same way, if desired. These bosons
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can be expanded into modes,

arn =i 2"; 2"901,(2) @

where

laLin,arjml =n8n, - mnij ,

=9z n+ =9z n—
b, ﬁzm_z b(z), ¢, i Z c(z).

Defining the SL(2,C)-invariant world-sheet vacuum
| 0), we have

(D-[s(p)+gij(p)aL_‘1a&jl+. . -16‘151|P), (5)

where |p)=e’®*© |0). Here s(p) is the tachyon state
in the momentum space and g;;(p) contains the “would-
be” graviton. It is clear that the space we introduced is
much bigger than the Fock space of the physical states in
the closed bosonic string. The important point is that by
varying the charge vector a [satisfying the constraint Eq.
(3) for left and right movers separatelyl, the space is big
enough to include the Fock spaces corresponding to all
the classical vacua of the closed bosonic string. In fact,
it is even bigger than that. For any specific choice of the
central charges, there are numerous unphysical states.
For example, let ¢; =1 for i=0,1,...,25, and ¢; =0 for
the rest for both the left and the right movers; this corre-
sponds to the usual bosonic string except that the 25
(c; =0 nonunitary) conformal fields introduce numerous
unphysical states. In the string field theory, we must
project them out. Let us introduce a projection operator
?(a,¢) to remove these unphysical states when we go on
shell. Although the explicit form of this operator
P(a,¢) is not known, operationally we have a pretty
good idea of how it functions. For specific choices of a,
we can project out all the nonunitary Virasoro represen-
tations, leaving behind a unitary conformal family.® We
shall elaborate on this projection in a moment.

The string field action can then be (symbolically) writ-
ten down as

S=f Do, Db Dels (@0 HPO)+ L (@OD].  (6)

Here, the action is essentially the usual string field ac-
tion, >+ 10:11 except for the inclusion of 7 and a; the
range of a is constrained by Eq. (3). On shell, the pro-
jection operator P(a,¢) keeps only unitary conformal
families. The kinetic operator # includes Becchi-
Rouet-Stora-Tyutin (BRST) operators; on shell, the
BRST symmetry removes the unphysical timelike modes.
Note that P is required to commute with #. On shell,
the kinetic operator # guarantees left-right level match-
ing and provides the kinetic operator for each physical
field. The explicit form of the kinetic operator % is not
settled yet. In the absence of the interaction term, we
can choose'®!! either # =(coQ+co0)8(Lo—Lo) or H
=27QQ/sinlz(Lo+Lo)] where the left (right) BRST
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charge operator Q (@) obeys Q2=02=0, and Lo (Lo)
is the corresponding Virasoro generator. Actually, the
difficulty associated with the covariant formulation of
closed-string field theory is not essential to our construc-
tion. We could easily have applied the idea to the light-
cone string field theory where the string field action is
known.* In that case, we only introduce 48 chiral bo-
sons, with ¢ =24 for the transverse modes. All classical
vacua that can be recovered from the light-cone formula-
tion will have at least one space and one time dimension.
This is not such a big loss if we can write down the ac-
tion explicitly.

At this point, it is useful to compare this formulation
with the free gauge-field theory:

S=;—fdxA,,KPﬂVAV
=+ [dx4,0%6*—497/87)4,. ™

The gauge symmetry 64, =9,A follows simply because
P"'9,L =0. In the free covariant string field-theory case,
P(a,¢) clearly allows a very large symmetry, i.e., all 6@
that satisfy P6®=0. On shell, the theory is unitary by
construction. All negative-norm states from the 50
chiral bosons with Euclidean metric are removed by the
projection operator 7 while the negative-norm states
from the timelike boson ¢ are removed by the BRST
operators in . Off shell, negative-norm states beyond
those from the timelike modes are present in huge num-
bers, in general. We believe this new symmetry, result-
ing from the projection P, is the true string symmetry.
In comparison, the usual BRST symmetry in string field
theory is simply a compact way of organizing the gauge
symmetries and kinematics that are already present in
quantum field theory for massless and massive particles.

This approach is very different from the approach im-
plicit in many recent works, e.g., derivation of the equa-
tions of motion via the vanishing of the B functions of
nonlinear o models,'? and the renormalization-group
flow of two-dimensional nonlinear o models towards con-
formal fixed points.'> In Euclidean space, these ap-
proaches demand unitarity off shell and (super)confor-
mal symmetry is required only on shell. Our approach
demands (super)conformal symmetry both on and off
shell, while unitarity is required only on shell. This em-
braces the same philosophy of gauge theories.

The operational meaning of the projection operator
P(a,$) needs some clarification. Consider any boson
with ¢ < 1. For any given p in a set of discrete momenta
(discrete because chiral boson with anomaly takes value
on a circle), the Fock space Fj corresponding to any e'??
is a priori very large,

Fs={|n,p)=a"a",--- |p)}. (8)

Furthermore, the Fock space has a natural Virasoro
structure from Eq. (1). Let us consider any model in the
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¢ <1 unitary series, which can be bosonized. In general,
F; as Virasoro module contains negative-norm states.
For specific choices of the highest weight 2z =p(p —2a)/
2 permitted in the unitary series, the Fock space Fj is
still much bigger than the irreducible representation of
Virasoro algebra V3, and, in general, contains negative-
norm states. Feigin and Fuchs® (FF) developed a way to
project out all states except those in the Virasoro repre-
sentation: Pgp:F;— Vj where k is an allowed highest
weight.

Going through all choices of p, we have P(a,¢):
{F}— @;V4,. For c <1, the final result is well known
and the set of representations @V}, is automatically
guaranteed to form a unitary conformal family C,; i.e.,
the operator-product expansion of any two fields in C,
closes in C,. For ¢ =26, we further require the closure
property on the set of irreducible representations. Oth-
erwise it is projected out. For a given choice of a, there
should be a unique unitary conformal family C, (up to
discrete symmetries) and ?(a,¢) projects out everything
else. For some choices of a, C, can be trivial; i.e., it con-
tains only the identity element. For a fixed a, the equa-

P(a,¢) :F;/ZQFP’/Z—’ Vo® V120V 1/16) @ (Vo®V 120V 1)16) -

tion of motion for the free-string field, #P® =0, may
have more than one solution. Given the classical solu-
tion, we may still have to check if it is consistent with
quantum mechanics, i.e., check for anomalies as in the
case in quantum field theory. This means checking the
consistency of the one-loop diagrams. In particular,
modular invariance at the one-loop level must be main-
tained.

Let us illustrate the above points with the case of two
bosons (cy,c2) whose total central charge is ¢, +c,=1.
We discuss how the projection P operates on the Fock
space as we move from the (3, %) case to the (1,0) case.
This example also illustrates how a space dimension can
arise. Of course we can connect the two cases by going
along the Z; orbifold and then along the torus by chang-
ing radius, so that the theory remains unitary
throughout;'* but instead we shall vary away from uni-
tary conformal theory by following ¢;=7% +y and c»
=+ —y where y varies from 0 to +.

At the point (%, %) the projection operator P essen-
tially eliminates all the Fock space except the three uni-
tary representations of the Ising model, i.e.,

)

Therefore, the theory describes either two copies of Ising models or a complex Dirac fermion. For y=0, 1, the theory is
not unitary and hence is projected out. At the end point (1,0), P(a,¢) acts on the ¢ =0 boson alone. Since the only un-
itary representation of the ¢ =0 Virasoro algebra is the identity representation, i.e., P(a,¢): ®,Fy— I; the projection
essentially eliminates this boson. For the ¢ =1 boson, the closure condition for unitary conformal family (coming from
interaction vertex) implies the single valuedness on the world sheet. Consider

explip 9(z) +ipro (2)lexpliqr o (W) +igro(w)]

=(z—w) Pz —w) "R expli(p, +q1 )W) +i(pr+qr)oW) ]+ - - - .

The single-valuedness condition is satisfied if prq;
—PrGr € Z. The levelinatching condition from # im-
plies pL2/2+N = p;%/Z + N. Therefore, the momenta are

nR+-1

L= 2R

s PRT

nR—%], nmez, (1)

where the radius R is arbitrary. In the limit R — oo, the
momentum p; =ppg takes continuous values, and a;o can
be identified with ago. If we choose 26 bosons, including
#0, to have ¢ =1 and the rest to have ¢ =0, we can repeat
the above procedure for each ¢ =1 boson. The g;;(p) in
Eq. (5) become g,,(p) as functions of continuous mo-
menta p, where u,v=0,1,...,25. The space-time then
emerges from the Fourier transformation of p. Clearly
this is merely one particular solution out of many possi-
bilities.

Note that the requirement that 7 and # commute im-
poses a strong constraint on 7. In particular, 2 can only
decouple ¢=0 conformal fields. Suppose, for fixed a,
that there are central charges not in the unitary series,
say some c¢; <O0; then either P projects out everything

10)

leaving behind a trivial solution, or the corresponding
¢; <0 fields combine with some ¢ > 0 fields to yield non-
trivial unitary conformal families. That is to say, 7 can-
not completely project out any boson with nonzero cen-
tral charge; otherwise, the effective central charge in the
BRST operator will not be 26, i.e., 7 would not com-
mute with #.

Now we are ready to explain our working hypothesis
of choosing the 51-dimensional space for the bosonic
string. The smallest central charge for any unitary con-
formal field is ¢ = %, so we introduce 50 chiral bosons to
replace the 25-space dimensions. We can have only one
time dimension, otherwise the BRST symmetry could
not remove all the timelike modes. This gives the 51 di-
mensions. Of course, we can consider higher-dimen-
sional space if desired. The crucial point is that for fixed
c=26, the number of dimensions conceivably needed to
describe all possible conformal fields needed in string
field theory is finite.

Applying the same hypothesis to the heterotic string,
we introduce 51 holomorphic bosons plus one for the
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ghost for left movers and 29 antiholomorphic bosons
(with two time components) plus three for the
(super)ghosts for the right movers.

In summary, we introduce a configuration space upon
which string fields are defined and demand
(super)conformal symmetry both on and off shell while
unitarity only on shell. The enlarged space includes all
classical vacua and hopefully the true vacuum of nature
as well. We point out that the projection on an enlarged
space introduced in this paper also suggests a way to
classify conformal field theories.
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