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We present a new method for optimizing the analysis of data from multiple Monte Carlo computer
simulations over wide ranges of parameter values. Explicit error estimates allow objective planning of
the lengths of runs and the parameter values to be simulated. The method is applicable to simulations in

lattice gauge theories, chemistry, and biology, as well as statistical mechanics.

PACS numbers: 05.50,+q, 64.60.Fr, 75.10.Hk

Recently, we showed that histograms can be used to
greatly increase the amount of information obtained
from a single computer simulation in the neighborhood
of a critical point. ' In particular, we demonstrated that
the location and height of maxima and minima can be
determined with higher accuracy and much less comput-
er time than previously obtainable. We also noted that
the region of validity of the single histogram method
coincides with the finite-size scaling region, so that infor-
mation about the critical region does not deteriorate with

increasing system size.
On the other hand, for more general problems it is

often desired to investigate the behavior of the system
over a wider range of parameter values. In this situa-
tion, it is necessary to perform simulations at more than
one value of the parameters of interest.

This paper presents an optimized method for combin-
ing the data from an arbitrary number of simulations to
obtain information over a wide range of parameter
values in the form of continuous functions. The method
goes beyond earlier methods in that it provides an opti-
mized combination of data from different sources, and
can be applied to an arbitrary number of simulations.
Errors can be calculated and provide a clear and simple
guide to optimizing the length and location of additional
simulations to provide maximum accuracy.

It is possible to extend the temperature range to gen-
erate the free energy and entropy from zero to infinite
temperature.

Finally, our method can be used with any simulation
method that provides data for a system in equilibrium,

and it requires a negligible amount of additional comput-
er time for its implementation. The method is therefore
applicable to simulations in lattice gauge theories,
chemistry, and biology, as well as statistical mechan-
1cs.

We will first describe the method and then demon-
strate its e%ciency by calculating the properties of an
I. 16, d 2 Ising model for the full range of tempera-
tures.

Consider the general Hamiltonian

where S(o) is an operator (energy, magnetization, etc.)
defined on the spins [a;J, and factors of —I/kttT have
been absorbed. We are interested in the behavior of the
system as a function of K. For simplicity, we will consid-
er only one parameter EC, but the generalization to an ar-
bitrary number of parameters is straightforward. The
partition function is given by

Z(K) g exp [H(cr) ] g W(S) [KS],

where W(S) is the density of states.
Consider R Monte Carlo simulations. We perform the

nth simulation at EC„and store the data as histograms,
+„(S)f,with total numbers of values [n„j. Errors are
given by

where we have used a bar over an expression to indicate
the expectation value with respect to all Monte Carlo
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g p. (S)-1.
n

If we insert the actual histograms in (1) and minimize
the error in the resultant estimate for W(S), we find

n„g„'exp [K„S—f„]
-~n g 'exp[K S f ]—

If we then define

P(S,K) -W(S)exp[KS],

we obtain the essential multiple-histogram equations as

g„"- g„'N„(S)exp[KS]
P S,K

-~n g 'exp[K S f]—(3)

where

exp[f„] g P(S,K„) .
S

(4)

The average value of any operator on S can then be
evaluated as a function of K using

&A (S)&(K) -g A (S)P(S,K)/z(K),

where

z(K) -QP(S, IC) .
S

(MC) simulations of length n„.If successive MC
configurations are independent, then g„=1, otherwise

g„1+2z„,

where z„ is the correlation time.
We can approximate the behavior of the partition

function by

z„(K) g N„(S)exp[(K —K, )Sl
S

which is related to the true partition function by

z„(K) -n„Z(K)IZ(K„) .

The free energy is given by

F(K) F(K„—) lnz„(K) —Inn„.

The density of states is related to the histogram by

W(S) N„(S)n„'exp [f„—K„S],
where f„F(K„)is a parameter equal to the free energy
at K„, and will be evaluated self-consistently. If we per-
form simulations on a set of values [K„~n = I,Rj, we can
combine them to form a general expression which leads
to an improved estimate for W(S). This gives us

R

W(S) g p, (S)N„(S)n„' exp [f„—K,S]
n 1

with

The values of f„are found self-consistently by iterat-
ing (3) and (4). Efficient convergence is obtained by us-
ing the derivatives of the new values of f, as functions of
the old values in the iteration process. Note that from
the form of Eqs. (3) and (4), an arbitrary constant can
be added to each f„without affecting the solution. This
constant can be determined by evaluating the free energy
at zero or infinite temperature, where it is known. Alter-
natively, it can be set to zero at some reference point,
which is useful when applying the method to the calcula-
tion of interfacial free energies.

The statistical error in P(S,K) is given by

bP(S,K) —gg„'N„(S) ' P(S,K)
n

(5)

from which it is clear that this method always reduces
the statistical errors when additional MC simulations are
added to the analysis. This expression also provides a
clear guide for planning a series of simulations. The lo-
cations and heights of peaks in the relative error, plotted
as a function of S, give direct quantitative indications of
the optimum locations and lengths of additional MC
simulations.

As a practical matter, it is useful to handle most of the
calculations in terms of the logarithms of the various
quantities in these equations. Also, if there is insufficient
computer memory to save an entire two-dimensional his-
togram, the average of the magnetization and its square
can be stored as functions of S to determine the magnet-
ic susceptibility. It is sometimes preferable to store MC
data in terms of lists rather than histograms, with obvi-
ous modifications of the equations. This will be prefer-
able, for example, if qn„& r~, where q is the number of
operators and r is the number of values each operator
can assume.

If the method is restricted to two MC simulations, the
calculated diff'erence in the free energies between the
simulated points

F(K)) —F(K2) f )
—f2

is identical to that obtained by Bennett's method.
We have tested this multiple-histogram method

against the exact solution of the 4 =2 Ising model with
L 16. The Hamiltonian is given by

0 Kg cr;aj,
(i,j )

where the spins take on the values +1 and —1, and the
sum is over a11 nearest-neighbors pairs.

For temperatures close to the critical temperature, a
single simulation is sufficient for high accuracy. Howev-
er, for temperatures more than about 20% away from the
critical temperature, additional simulations are neces-
sary. To improve the accuracy away from K„we added
simulations at K 0.3 and 0.64 to the first simulation at
K, 0.4406868. Then, using plots of the relative error
from (5) as a guide, we studied the results of adding
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simulations at E 0.0, 0.1, 0.2, 0.375, and 0.525 for a
total of eight. We simulated the model using the
Swendsen-Wang algorithm, taking 2 x 10 MC sweeps
at each temperature, except for T„where we used 9.5
x10 sweeps. The value of g„at T, was estimated to be
6, with smaller values at other temperatures.

The difference between the calculated and exact values
of the specific heat over the full temperature range is less
than 0.3%, and would diff'er from the exact values' by
less than the width of the line if we were to include a plot
with this paper.

The results for the entropy show dramatic improve-
ment as data from additional MC simulations are includ-
ed in the calculation. The entropy is given by the expres-
sion

so that entropy differences can be calculated directly. As
an example, consider the d =2 Ising model on an L by L
lattice, for which the total differences in the entropy per
site between zero and infinite temperature is (I
—L ')ln2. For L =16, this has the value 0.69044.
When the data are restricted to a simulation at the criti-
cal temperature, the calculated entropy difference is
0.591, which is off by 15%. Adding data from the simu-
lations at E-0.3 and 0.64 gave a value of 0.6746, which

already reduced the error to 2.3%. Finally, using data
from a11 eight simulations, we obtained 0.69030 with a
remaining error of only 0.02%. This is an order of mag-
nitude better than would be necessary to see the L
term due to the twofold degeneracy at T =0.

Another application of the method, for which we al-

ready have preliminary results, is the calculation of the
free energy of a seam of bonds with coupling E'=ttK.
The point a-I corresponds to the usual periodic bound-

ary conditions, a =0 to free boundaries, and a = —1 to
antiperiodic boundary conditions. By taking two-dimen-
sional histograms for the seam energy and the total ener-

gy of the system, we can calculate the surface free ener-

gy and the interface free energy as functions of the tem-
perature and a. Taking MC data for just the two points
a =1 and —1, the results are quite good for the smallest
lattices (L -4 and 6) as expected from the successes of
Bennett's method. However, even here the weakest part
of the calculation is for seam energies near zero, and the
addition of data from a third simulation at a =0 provides
improvement. For system sizes up to L =8, four simula-
tions are sufficient to reproduce the interface free energy
with an error of 0.05% (and agreement with the exact re-
sult). The same data give the surface free energy with
an even sma11er statistica1 error. By extrapo1ating the in-
terface free energy as a function of L we can estimate
the interface free energy per unit length in the thermo-
dynamic limit as a function of temperature. We find

that even restricting ourselves to data between L 4, 6,
and 8, the interfacial free energy vanishes at a tempera-
ture within 0.2% of the exact value. This extension of
the calculation to temperatures other than those at which
the simulations were performed does not require addi-
tional parameters beyond the set ff„), which were al-
ready determined.

Since this method is able to combine Monte Carlo
simulation data from diff'erent sources to increase the to-
tal accuracy of the results, it could even be used to com-
bine data from diff'erent groups working on large prob-
lems, such as those encountered in lattice gauge theories.
Because there are no limitations on the method of simu-
lation, we also expect this approach to be useful for
simulations in chemistry and bio1ogy.
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