Weidinger *et al.* Reply: In a recent paper¹ we showed that magnetic ordering exists in $La_{2-x}Sr_xCuO_4$ samples which are superconducting. We interpreted the data as evidence for the coexistence of superconductivity and magnetism in these samples. This interpretation was questioned by Harshman et $al²$ who argued that our samples are electronically inhomogeneous and that magnetic ordering and superconductivity occur in spatially separated regions.

The main argument against this two-phase hypothesis of Harshman et al. is that we find a continuous variation of the two relevant parameters, the transition temperature T_c and the internal magnetic field $\langle |B_u| \rangle$ with Sr concentration x . In the two-phase picture one would expect that T_c and $\langle |B_u| \rangle$ which are characteristic for the superconducting and the magnetic phase, respectively, remain more or less constant as x is varied and that only the volume fractions of the two phases change.

However, this is not what we observe. We rather find that T_c and $\langle |B_\mu| \rangle$ vary continuously and strongly with x . For example, the magnitude of the internal field changes by more than I order of magnitude if the Sr concentration is increased beyond $x=0.05$. This is not just an effect of short-range ordering compared to longrange ordering since short-range ordering sets in already at much lower Sr concentrations, i.e., around $x = 0.02$. Thus the reduction of $\langle |B_{\mu}| \rangle$ must be an effect of a change in the electronic structure.

We believe that the density of charge carriers is the relevant parameter for both superconductivity and magnetism. A higher carrier concentration favors superconductivity (higher T_c) and suppresses magnetic ordering (lower $\langle |B_u| \rangle$). In an intermediate region of moderate charge carrier density, superconductivity and magnetic ordering can coexist.

Figure 1 shows an empirical relation which we found between the magnitude of the internal magnetic field and the superconducting transition temperature T_c . It can be seen that internal magnetic fields of reasonable size develop only for not too high transition temperatures. Assuming that T_c is related to the concentration of charge carriers, as was shown by measurements of the Hall $coefficient, ³ internal magnetic fields should not exist in$ systems with large carrier concentrations as, e.g., in the 90-K superconductor $YBa₂Cu₃O₇$. In these systems we indeed did not find magnetic ordering. '

The authors of Ref. 2 criticize our procedure of background subtraction arguing that this could inhuence the quoted volume fraction for magnetic ordering. Our statement that more than 70% of all muons see an internal magnetic field is based on the absolute value of the

FIG. 1. Internal magnetic field $\langle |B_u| \rangle$ as a function of the superconducting transition temperature T_c (downset) for $La_{2-x}Sr_xCuO_4$ samples with different Sr content x. Also shown in this figure is the internal magnetic field of undoped La₂CuO₄ which is not superconducting.

asymmetry of the fast relaxing signal and uncertainties in the background subtraction are contained in the remaining 30%. Thus the procedure of background subtraction is not crucial for the main statement of the paper.

A. Weidinger, ^(a) Ch. Niedermayer, A. Golnik, ^(b) R. Simon, and E. Recknagel

Fakultät für Physik Universitat Konstanz D-7750 Konstanz, Federal Republic of Germany

- J. I. Budnick and B. Chamberland University of Connecticut Storrs, Connecticut 06268
- C. Baines

Paul Scherrer Institute CH-5232 Villigen, Switzerland

Received 22 March 1989 PACS numbers: 74.70.Vy, 74.60.Mj

(a) Present address: Hahn-Meitner-Insitut Berlin, Bereich P, Glienicker Strasse 100, D-1000 Berlin 39, Germany.

(b) Permanent address: Institute of Experimental Physics, University of Warsaw, 69 Hoza, PL-00681 Warsaw, Poland.

²D. R. Harshman et al., preceding Comment, Phys. Rev. Lett. 63, 1187 (1989).

3M. Suzuki, Phys. Rev. B 39, 2312 (1989).

 $¹A$. Weidinger et al., Phys. Rev. Lett. 62, 102 (1989).</sup>