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Interacting Defect Model of Glasses: Why Do Phonons Go So Far?
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We present a model of insulating glasses in which defects interact strongly via the elastic strain field.
The interactions are oscillatory at short range and cross over to 1/r interactions at longer length scales.
This crossover is marked by a strong renormalization of the density of states and is consistent with the
long phonon mean free path found at low temperatures.

PACS numbers: 61.4G.+b, 66.7G.+f

Despite their microscopic disorder, glasses below 1 K
exhibit amazingly long phonon mean free paths as de-
duced from thermal-conductivity experiments. ' In Si02,
for example, the mean free path /-60 1tm at 0.5 K. In
general at low frequencies, and hence low temperatures
by the dominant-phonon approximation, 1—150K,, where
A, is the phonon wavelength and the proportionality con-
stant can vary by a factor of 3 either way from material
to material. Around 200 6Hz the mean free path drops
sharply and becomes considerably shorter (I—X) at
higher frequencies. ' Other than to say that the con-
centration of scatterers is dilute, the standard model of
two-level systems provides no real explanation for why I
is so long at low temperatures. In this paper we address
this puzzle using a model of strongly interacting de-
fects. Since we confine ourselves to insulating glasses,
the interactions are elastic. Using a renormalization-
group scheme, we show that these interactions have a
crossover as a function of length scale. This crossover is
marked by a decrease in the density of states and hence
an increase in the phonon mean free path at longer
length scales which can be associated with lower-energy
scales.

Before presenting the details we brieAy review the
thermal-conductivity and specific-heat experiment, ' and
their implications. Below 1 K the specific heat in insu-
lating glasses is slightly supe rlin ear in temperature
(C—T'+, b —0.1-0.3) and the thermal conductivity is
slightly subquadratic (tc—T ', e—0.05-0.2). Between
3 and 10 K the thermal conductivity exhibits a plateau
and then continues to rise at higher temperatures. The
specific heat also displays an anomaly in this tempera-
ture range: there is a bump in C/T vs T.

What do the plateau and bump imply about the phys-
ics of glasses? No hints come from the two-level system
(TLS) model. If we assume that phonons carry the
heat in this temperature range, then the plateau repre-
sents the previously mentioned crossover from a long

mean free path at low frequencies to a short mean free
path at higher frequencies. Such behavior is consistent
with a rise in the density of states at some energy Eo
since this would increase both the number of scatterers
as well as the number of excitations contributing to the
specific heat. Fitting the bump in C/T for various
materials sets Eo in the range from 10 to 40 K, con-
sistent with the rise in the density of states measured by
neutron scattering and Raman scattering. ' "

With the above considerations in mind, we sketch an
alternative approach to the problem of glasses. We as-
sume that glasses contain some sort of defects that have
some low-lying energy excitations with no restriction on
the energy range. We want our model to be suKciently
general so that we do not need to specify a microscopic
model of the source of excitation. We assume that these
defects couple linearly to the strain field:

H -o.p(r) e,p(r), (1)
where e,p(r) is the symmetric strain field and o,p(r) is
the stress field associated with the defects. The indices a
and P range over the real-space directions x, y, and z and
the sum over repeated indices is understood. In the TLS
model a,p is replaced by I S, where S is a spinlike TLS
operator represented by Pauli matrices. I is a vector in

spin space and a matrix in real space. The spin represen-
tation is that of the energy eigenstates of the two-level
system. The of-diagonal components in spin space cor-
respond to transitions between energy levels. The diago-
nal components do not involve transitions and are Ising
type. We use this basis in the calculation described
later.

The defects interact with each other via the strain
field. Here we break with tradition and propose that it is
interactions, not the intrinsic splitting of the levels of a
single defect, which dominate the energy scale. Using
second-order perturbation theory to calculate the off-
diagonal effective interaction between two defects which
have the same energy splitting AF. , one finds'

2 2

H s(f r, AF. ) g 2 2
e ri p rt&s rr p(r)rrrs(r ), (2)

~, n pc~', (&F-)' —c'p',
where q,p (p ep +ppe, )/2. The sum over A, is over the longitudinal and transverse phonon polarizations. p is the

1160 1989 The American Physical Society



VOLUME 63, NUMBER 11 PHYSICAL REVIEW LETTERS 11 SEPTEMBER 1989

density and c is the speed of sound. p, is the ath com-
ponent of the unit phonon wave vector and e~ is the Pth
component of the unit phonon polarization vector. For
&F. 0, the eAective interaction becomes dipolar, i.e., it
goes as g/r, where g-y /pc . Taking y-1 eV, we es-
timate g-5 x 10"KA .

The crossover is associated with a change in the off-
diagonal interaction between defects from oscillatory to
dipolar with increasing length scale. ' (The diagonal in-
teraction is dipolar at all length scales. ) Imagine that we
divide a sample into blocks of size r i such that the dis-
tance between the centers of the blocks is also r1. Sup-
pose that we know the density of states in each block and
hence the energy-level spacing. We then work out the
interaction between blocks via phonons. Having done
this, we can group our blocks into bigger blocks of size r 2

and repeat the process. By iterating, we go to longer and
longer length scales. There are two natural length scales
in the problem. The first, which we will denote by rd, is
the average nearest-neighbor distance between bare de-
fects. The second, which we will call ro, is given by
(g/hc) ' '

We start by considering individual defects, i.e., blocks
of size r-rd. Suppose the intrinsic energy splitting &Fp
of a bare defect is much less than the phonon energy
hc/rd. (rd is the relevant phonon wavelength at this
length scale. ) Then the strain interaction will dominate
the energy splitting and the effective splitting will be
&F. -g/r Accord. ing to mean-field theory, ' ' the
density of states n(E) will be —1/g and l-k, . At longer
length scales, rd«r«rp, the level separation in the
blocks of size r is &F. —[n(E)r ] '-g/r . The phonon
energy, Aco~h —hc/r, is much less than &F.. Hence the
phonons are too weak to cause transitions and are
ineffective at causing off-diagonal interactions between
blocks. At longer length scales, r ~rp, h, m~h &F., pho-
nons are effective mediators of the interaction between
blocks, and the interaction goes as 1/r . Notice that set-
ting the phonon energy equal to the typical energy split-
ting (hc/r-g/r ) and solving for r gives ro. Thus ro
provides a natural crossover from a region of ineffective
interaction to a region of dipolar interaction. We believe
this crossover is associated with the plateau in the
thermal conductivity and the bump in C/T . Using our
previous value of g-5x10 KA. , we estimate ro-13 A
and hc00 hc/ro —24 K. This is consistent with the
value for the rise in the density of states (Eo—10-40 K).

Interactions also strongly renormalize the density of
states as one goes through the crossover. We now
present a calculation which is consistent with this asser-
tion. We start by dividing our sample up into concentric
spherical shells like those of an onion. Imagine random-
ly pasting postage stamps of various sizes on the layers of

the onion. These represent the defects. We assume that
without interactions the energy levels of the bare defects
are degenerate. Thus &Fo-0 initially. The density of
states NI resulting from off-diagonal interactions be-
tween the initial core and the first layer is calculated.
From N& we find the energy splitting &F. i of this com-
posite which forms the new core. This is the &F- we use
in H, tr(r, AF. ) to calculate the density of states in the
next iteration. By iterating this procedure, we go to
longer and longer length scales and watch how the densi-
ty of states changes as we do this. In general, the density
of states N resulting from iterating through m shells is
given by a definition akin to that found in mean-field

eory. 6, 14, 15

m

N zg d rH g(r AF.; i)
14 ith shell

(3)

where H, fr(r, AF. ) is given by Eq. (2) and r is measured
from the center of the core. The sum i is over the layers
of the onion and AF.; I is give—n by

[N~ x (volume of core with m shells)] '. (4)

We neglect frustration and mimic the spin degrees of
freedom represented by the a,p(r) associated with the
defects in the layers by real numbers which can be posi-
tive or negative, depending on which choice minimizes
the interaction energy with the core whose stress com-
ponents have been set positive. We fix the magnitude of
the coupling constants and watch how the density of
states changes relative to them. y, is the magnitude of
the traceless symmetric part of cr ~ and y, is that of
Tr(a,p)/3 for both the core and the shell defects. (y,
and y, are related to the longitudinal and transverse cou-
plings yi and y„e.g. , y, -J2y, ). We carry out the
iteration scheme with the aid of a computer. A typical
onion has 200 layers, each of which is 5 A since this is
the typical length of a structural unit. Our input consists
of p, cI, c&, and y, . The erst four quantities are mea-
sured experimentally, though the value of y, is subject to
some uncertainty. To determine y„we use
(y„y, ) & (yI/y& ) —2 and the empirical fact that
yi/y& —1.5 at long length scales.

The numerical results indicate that the density of
states is strongly renormalized by the strong interactions
between neighboring defects. To gain some understand-
ing of these results, we note that at short range
0 AFr/hc is large and the dominant interactions go as
(n /r )cosQ. (0 can be thought of as AF/hhco~h in the
block rescaling picture. ) The dependence on 0 implies
that the interaction between two regions depends on the
magnitude of the splitting arising from interactions
within each region. Using (3) and (4) and ignoring an-
gular factors, we obtain the following approximate recur-
sion relation for Q (r) AF. r/hc:

l'p(r)—
m

2 + g [&;—1(r2)sinn; —1(r2) —n;-1(r'j)sinn;-i(r'j )]
i 2

(5)
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where the sum is over shells making up the core. r'j and

r2 are the inner and outer radii of the ith shell, and we
used r-r2. ro-g/Ac, and the coupling g is roughly
given by y, /pc, . For ro/r) 1, the lack of cancellation
between the inner and outer radii of each shell as well as
the absence of frustration allows each stage to reinforce
the next and leads to a power series in ro —g as well as
0»1. This also results in a large denominator in (3)
and hence a small density of states. Thus it is the strong
interactions between near-neighboring defects which in-
crease the energy splittings and "blow a hole" in the
low-energy density of states. For long length scales
where (ro/r) «1, 0 goes to zero as r . Thus we expect
Q to go through a maximum at an r somewhat greater
than rp (see Fig. 1), and the interactions will change
from oscillatory to smooth.

As Q goes to zero at long length scales, H,g ap-
proaches g~ behavior. If we allow energy scales to be
related to length scales via E-gr, then N(E) —[A+
gin(E /Eo)l ', where Eo is on the order of the crossover
energy and A contains the cumulative effects of the inner
shells. ' ' A is the dominant term and sets the order of
magnitude of the density of states. This is just a restate-
ment of the fact that it is the strong short-range interac-
tions that renormalize N(E). The behavior of N(E) at
low energies agrees with the flat density of states seen in

experiment, and the logarithmic deviations are in the
right direction, c.f. the superlinear specific heat and the
subquadratic thermal conductivity. The inset of Fig. 1

shows how the renormalization of the density of states
and of I/X proceeds as one goes to longer length scales in

a single onion. Using Fermi's golden rule, we have
defined I/A, (2' gN ) ', where we have taken

g y, /pc, and N is the final density of states (after 200
layers).

Since it is the short-range interactions involving the
inner layers that dominate the magnitude of the density
of states, fluctuations in the size, number, and placement
of the defects in these layers lead to fluctuations in the
anal results of each onion. To provide some uniformity,
we have set a lower bound on the fraction of solid angle
occupied by defects, though I/A. is not very sensitive to
this fraction. We also average the dimensionless at-
tenuation A/I over several hundred onions. Assuming
that a suitable average is taken over the disorder, we
note by dimensional arguments that (I/k) can only be a
function of the value of 0 after the first iteration, name-

ly 0i. Our calculation indicates that different materials
with different y's have comparable values of I/X due to
the similarity of their initial values for Q. If we use ex-
perimentally deduced values' of y„ then 0i —1 and one
does not start far enough above the crossover to get
much renormalization of I/A, . However, the couplings
may change as one goes to longer length scales. Using
values of y, within roughly a factor of 2 of those quoted
in the literature, '6 we have studied several different ma-
terials and find values of I/1 in agreement with experi-
ment.

Our calculation of (I/k) is a sensitive function of y as
can be seen from the upper curve in Fig. 2. As we men-
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FIG. 1. The scaling parameter 0 vs the radius r evaluated
for a single onion using parameters appropriate for Si02. In-
set: Density of states vs r, the I/k vs r for a single onion.

FIG. 2. I/X vs y with parameters appropriate for Si02. The
dimensionless attenuation has been averaged over 400 onions
with a minimum defect fraction of 0.4. The circles correspond
to adjusting the sign of the stress components of each defect to
optimize the interaction energy with the core. The triangles
correspond to randomly choosing the signs but constraining
each shell to give a positive contribution to the energy. A real
system that is frustrated should lie between these two curves.
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tioned before, iterating (5) where (ro/r) & 1 has a rein-
forcing effect which leads to a power series in ro -g and
hence roughly exponential dependence on y . Including
frustration would reduce the amount of positive feed-
back. However, since there is a net minimization of the
energy, there will still be a net decrease in the density of
states. We can get some idea of the importance of op-
timizing the stress con6guration by looking at a case
where it is substantially reduced. Figure 2 is a plot of
l/A, vs y with parameters appropriate for Si02 in which
the attenuation has been averaged over 400 onions. If
we assume that the logarithm of the attenuation has a
Gaussian distribution, then there is roughly an error of
N '/ -5/0 error in In((l/1, )). The lower curve shows
the results of randomly choosing the sign of the stress
components of the defects but with the constraint that
the sum in (3) contain the absolute value of the contri-
bution of each shell. This is equivalent to allowing each
shell to make a global rotation of its stress components.
We expect a frustrated system which minimizes the en-
ergy to have an 1/A, which lies between these two curves.
For SiQ2 this agrees with experimental values for l/A, for
y, ~2 eV.

To summarize we have presented a model of insulating
glasses in which defects strongly interact via the elastic
strain field. The dominant interactions are oscillatory
ones at short distances which strongly renormalize the
density of states. For a variety of materials this results
in 1/A, »1 in agreement with experiment. Furthermore,
there is a natural crossover at longer length scales to
1/r interactions. We have argued that this crossover
can be associated with the plateau in the thermal con-
ductivity and the bump in C/ T .
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