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A simple theory for melting, freezing, and phase coexistence is presented with special reference to
small clusters and spinodal curves. This theory, which neglects fluctuations, coupled with the results of
computer simulations, suggests a reevaluation of our interpretation of spinodals and first-order phase
changes. We find sufficient, physically plausible conditions for a system of mutually attracting quasipar-
ticles to give rise to stable, coexisting solidlike and liquidlike “isomers” of small clusters. These isomers
are identifiable as the small-particle counterparts of metastable solids and liquids whose existences are
bounded by spinodals; the theory implies the sharp termination of the spinodals.
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Small, finite systems—clusters of atoms or mol-
ecules— may exhibit solidlike and liquidlike forms which
are quite like solid and bulk materials in most respects.
The equilibrium between the two forms of a small cluster
differs in an important way from that of bulk matter.
While many complicated kinds of equilibria among
isomeric forms of clusters may occur, one particularly
simple kind of equilibrium relevant here is found from an
analytic model' and in simulations,? and may have been
found experimentally.? This is the occurrence of sharp
but unequal freezing and melting temperatures, and a
finite range of temperature and pressure within which
solid and liquid clusters of a specific size may coexist,
like isomers.

More precisely, clusters containing a specific number
of particles, IV, may exhibit a sharp lower limit of tem-
perature, Ty, for the thermodynamic stability of the
liquid form and a higher sharp upper limit 7, for the
thermodynamic stability of the solid form. Consequent-
ly, a collection of N-particle clusters in thermal equilibri-
um acts as a statistical ensemble which, at temperatures
and pressures within the coexistence region, behaves like
a mixture of the two kinds of cluster: some solid and
some liquid. Being in thermal equilibrium, these forms
occur in a ratio K=Isolidl/[liquid]l =exp(—AF/kT),
fixed by the difference in free energy, AF, between the
solid and liquid forms. But this is a dynamic equilibri-
um, with individual clusters passing between the two
forms; except for the smallest clusters, it is almost
unthinkable that such a system would not be ergodic. If
the two forms are to be observable, coexisting in equilib-
rium like two phases or two chemical isomers, the mean
frequency of passage between them must be low enough
for the clusters to establish equilibrium values of their
characteristic properties. This condition seems to be met
in at least some cases;2 how general it is remains to be
determined.

Here we will demonstrate that the local stabilities re-
sponsible for coexisting solid and liquid clusters can be
identified with the local stabilities responsible for bulk
supercooled liquids and, when they occur, superheated

solids, in which bulk matter is trapped in a local mini-
mum of free energy. Furthermore, the behavior of clus-
ters gives justification for the existence of sharp limits to
spinodals. Third, the phase equilibrium of clusters shows
how the first-order melting-freezing transition is the re-
sult of two, logically distinct phenomena: One is the ex-
istence, particularly the coexistence, of the liquid and
solid forms; the other is the effect of large numbers of
particles on the equilibrium ratio of these forms. The
sharpness of the observed transition is not logically
linked to the existence of sharp limits of stability of the
solid and liquid phases. This justifies addressing the
first-order phase transition in terms of separate stability
limits for the two phases, an approach long used, but
often with the misgiving that one ought to be trying to
find a theory (like the theory of second-order phase tran-
sitions) which exhibits the passage from one phase to
another rather than just the loss of stability of one or the
other.

An analytic theory® to explain the coexistence of solid
and liquid clusters, based on the behavior of the density
of states as a function of the degree of nonrigidity of a
cluster, implies that K has discontinuities at two temper-
atures, for clusters exhibiting that coexistence. The
lower temperature, Ty, is the lower limit of stability of
the liquid and hence can be called a freezing point; below
Ty, K(T) as defined above is zero. Above T, the upper
limit of thermodynamic stability of the solid and there-
fore called the melting point, K(7T) is infinite. The be-
havior of K between these limits is discussed below.*>
Of course K(T) also depends on N, but for small NV, not
in any simple way because the potential energy surfaces
of small clusters change dramatically with N. The pur-
pose of this work is to formulate a better description of
the coexistence phenomenon.

Reiss, Mirabel, and Whetton have interpreted® the
coexistence by using a grand canonical approach with a
model which allows solidlike and liquidlike regions in a
single cluster in terms of the capillarity approximation of
classical statistical mechanics. Their treatment yields a
free-energy barrier which they call upon as a source of
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stabilization of whichever form, solidlike or liquidlike,
has the higher chemical potential. This is a realization
of the barrier whose existence previously was only in-
ferred! and, for coexistence, posited as a necessary condi-
tion.” The approach used here is restricted to treating
clusters of fixed size, that is, stays within a microcanoni-
cal or canonical framework. The latter is appropriate for
many situations encountered with jet experiments; the
grand canonical approach is appropriate for high-density
and high-temperature conditions and long observation
times.

First we must distinguish two aspects of the depen-
dence of K(T) on N. One is the quantitative way in
which N affects the shape of K(T) within its range of
finite, nonzero values, and particularly in the region
around K=1. The other is the dependence on N of the
width of the temperature interval between T, and T,,.
The first of these has been understood for many years:>
Write K(T) =exp(— NAa/kT), where Aig(N) is the dif-
ference between the mean chemical potentials of the
solid and the liquid, AF/N. It is clear that, for N of or-
der 10 or 100, as Aa/kT passes through zero, K may fall
within an observable range from about 0.01 to 100 over a
measurable range of 7. However, if N is, say, 1019, then
K must change from a very small number to a very large
number within a very small range of T—unless, of
course, Az remains very, very close to zero over a wide
range of T, which would be pathological behavior for u
simply because the contribution to Ag from TAS must
change with the temperature. We therefore expect K(T)
to change from a number experimentally indistinguish-
able from zero to a number experimentally indistinguish-
able from infinity within an interval of temperature so
narrow that its width cannot be distinguished from zero.
[We assume that the dependence of 7(IV) on N is weak,
e.g., a fractional power.]

The behavior with IV of the width of the interval be-
tween Ty and T, is a different matter altogether. To ex-
amine this, we return to our model for the equilibrium
between solid and liquid N clusters.? Here K is con-
sidered to be a function of a parameter y measuring non-
rigidity, as well as of the physical variable 7. The limits
y=0 and y=1 correspond, respectively, to the limits of
the solidlike and liquidlike states. K(7T,y) has discon-
tinuities at the bifurcation limits of K. These occur at
the temperatures where the Helmholtz free energy,
F(T,y), gains or loses a minimum, i.e., at which the
cluster gains or loses a locally stable phase. (Here we
assume that the Helmholtz and Gibbs free energies are
practically equal.) Hence T is the lowest temperature
above which F(T,y) has a minimum at or near y=1,

and T, is the highest temperature below which F(T,y)
has a minimum at or near y=0. For computations, it is
more useful to focus on the coalescence of a maximum
and a minimum, or on the disappearance of a maximum
of F(T,y), than on finding minima, simply because a
minimum may be at a boundary, rather than the interior.
With a simple model for the density of states in which
the energy of each quantum state varies linearly with 7,
the limiting conditions become

IBF(T,y)/By]r,,-l "0, [8F(T,y)/6y]1,,-o-0 .

These conditions determine Ty and T,.

The question now is this: May AT=T, — T, remain
nonzero for large N? If AT, approaches a finite, non-
zero asymptote as N becomes arbitrarily large, then, in
the approximation that we neglect the destabilizing
effect of fluctuations on locally stable states, we are
justified in extrapolating from the local stability of liquid
and solid phases of clusters to that of bulk matter. This
in turn means that we can identify the stability of liquid
and solid clusters with Jlocally stable liquid and solid
forms of bulk matter. Pursuing the logic further, we
wish to identify supercooling with the persistence of the
bulk supercooled liquid in the same kind of local free-
energy minimum as that in the model of solid-liquid
coexistence for clusters. Furthermore, the extrema of
the loci of all such local minima in the free energy define
the limiting states whose locus is the spinodal curve.

The next step is the identification of 7T, with a natural
lower limit for the local minimum of free energy of a
liquid and hence with a natural lower limit of the spino-
dal. Likewise T, is identified as the upper limit for the
other spinodal branch, which would correspond to a su-
perheated solid if dynamics did not generally prevent
solids from superheating. We will now demonstrate how
a physically plausible, statistical mechanical model can
exhibit the relationships described above. In the con-
clusion, we return to the question of fluctuations.

To study the behavior of AT,(N), we need a model
that gives us F(y,7). The model used in Ref. 1 is very
general but is, at best, quantitatively useful only near
y=0 and y=1. Instead, we begin with the model Stil-
linger and Weber formulated for the melting-freezing
process on the basis of their computer simulations of ar-
gon clusters.® (We will generalize below.) This model is
cast in terms of p, the density of defects in the bcc lat-
tice. Two partition functions are presented by these au-
thors; the first neglects defect-defect interaction and the
effects of defect formation on the normal-mode spec-
trum; the second, which serves our purposes, includes
those effects:

N/a m
Zn=VZ% exp(—Bo) ZO{[n'”/(m!)zlexp[—mﬁA+m2(n+ﬂe)]/2N}kH [N—(k—1)d]?. 1)
r— -1

Here g=1 /kT, V is the volume, Z 2, is the vibrational partition function, m is the number of defects, n is the number of

1157



VOLUME 63, NUMBER 11

PHYSICAL REVIEW LETTERS

11 SEPTEMBER 1989

internal configurations of one defect pair, NV is the num-
ber of atoms, a is the number of lattice sites effectively
occupied by each defect, A is the energy required to form
one defect, n measures softening by defects of the
normal-mode spectrum, and € represents the strength of
the mean-field attraction between the defects. Both in-
teraction terms, n and fe, are assumed to be quadratic in
m. The form of Z, follows from the assumption that the
defects are vacancy-split-interstitial pairs, two distinct
entities per defect, as suggested by simulations.® While
this model takes the vibrational partition function Z 9 to
be independent of N, any simple variation such as that
invoked in Ref. 1 will not affect our conclusions. In the
large-V limit the sum is dominated by its maximum
term. We denote by M the value of m in the maximum
term; M varies smoothly with temperature but not mono-
tonically. Stillinger and Weber find an S-shaped curve
for M(B) on solving numerically; this relation, turned
into the more mathematically convenient form B(p), is
shown schematically in Fig. 1. The quadratic energy
terms in Zy were used in an intuitive manner by these
authors to find a ‘“singularity” for M as a function of
temperature, and hence for the partition function and
the free energy. Of course, the variation shown in Fig. 1
has no singularity; rather, the curve exhibited an S-shape
like that of the van der Waals equation of state projected
onto the P-V plane.

The regions identified as “unphysical” and irrelevant
by Stillinger and Weber are precisely those which in-
terest us in this paper. We work now with large but not
infinite N, to be able to use Eq. (1). Let us investigate
the behavior of Zy in more detail. First, we wish to find
the value of p=m/N, the number density of defects,

\ solid
8(m)
region of
coexistence
() ,
region of
free energy o .
maxima liquid

FIG. 1. A plot of p, the number density of defects, as a
function of B=1/kT in Stillinger and Weber’s model including
defect-defect interaction and the effect of defects on the
normal-mode spectrum. The curve is defined as a consequence
of the condition (8F/dm)s=0, where F is the free energy and
m is the number of defects. The derivation uses Stirling’s ap-
proximation and uses only the maximum term in the partition
function’s sum over all numbers of defects, and hence is inap-
propriate for very small /V.
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which produces a point of inflection in the partition func-
tion (and hence the free energy) for any fixed tempera-
ture. With Stirling’s approximation we obtain the equa-
tion of Stillinger and Weber for M, the m value of the
largest term in the sum:

9InZxn/0m =In (na?) —2Inm+21n(N/a—m)

—BA+m(n+pe)/N=0. )

We may regard this as the defining equation for B as a
function of m, the number of defects, or of p, and find
the points where 98/8m=0 and (3?InZy/dm?);=0.
The stationary points of 8(p) in Fig. 1 satisfy both con-
ditions. Furthermore,

(8%InZn/8m?)g=— (2/m){1 +1/I(ap) ~' —11}
+[(n+pBe)/NI1, 3)

which would be negative if defect-defect and defect~nor-
mal-mode interactions are neglected, because the last
term in square brackets would be absent. The limiting
density of defects is simply N/a, where a is the number
of sites effectively used per defect, so that (ap) "' —1 is
always positive. Hence without interactions of the de-
fects there would be no extremal points for (o) and the
whole curve would correspond to maximum values of the
partition function, and hence to a locus of minima for
the free energy.

The introduction of the term in square brackets can
change this situation completely if it is positive. If the
parameters € and 7 are positive, corresponding to
energy-lowering terms, then B(p) can have extremals as
shown in Fig. 1, which was computed by Stillinger and
Weber using estimated values for the various parame-
ters. Because the turning points correspond to changes
in sign of the second derivative, (82Zy/dm?);, the re-
gion of the curve between the two extrema of 8(p) corre-
sponds to a locus of free-energy maxima. This implies
the most important feature of this curve for our present
purposes: It contains regions of overlap in which there
are two free-energy minima at every temperature. This
is precisely what more explicit models and simulations
have given for smaller clusters: "> two isomeric, homo-
geneous, single-phase-like forms in dynamic equilibrium.
The pairs of local free-energy minima generated by the
Stillinger-Weber defect model can now be identified with
the minima in the cluster model derived from density-
of-phonon-states arguments. '

How general are the conditions on the defect model
which give rise to an S-shaped curve for M (8)? Instead
of writing the energy expression in the exponential as

mA—m?2(n/B+€)/2N =N(pA—p2e/2) — Nnp?/2B8, (4)

we now use the more general form

E=N Y, a,p* s)

a=1
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for the mean-field defect interaction terms (assumed in-
dependent of B) represented as a power series in the
number density p. On retaining this form and dif-
ferentiating with respect to m as before we obtain the
desired relation but inverse to the natural physical
dependence:

8B _ —2lp'+a/(l —ap)l+n—BNI*E/dm? )
om NOE/dm )

The condition for extremal points, 83/dm =0, cannot be
met if E=NpA because A is necessarily positive. How-
ever, the inclusion of correction terms including ¢, or of
the term in 7, can lead to the appearance of solutions if
they make a positive contribution in the numerator. This
is clearly the case if 7 and € are both positive. The latter
corresponds to a negative a; coefficient in the expansion,
in contrast to the contribution from A which leads to a
positive a; coefficient. The term in a; is not present in
the second derivative 8%2E/dm?2, of course.

In this way we have generalized the arguments to in-
clude higher-order terms in the mean-field-type energy
expression for the defect interaction. These will lead to
the presence of a characteristic S curve if the terms in
p?, p3, etc., make a net negative contribution to the ener-
gy. In other words, if the two-body, three-body, and
higher defect interaction terms make a net attractive
contribution, AT remains nonzero for large N and the
local minima characterizing coexisting solidlike and
liquidlike a clusters can be identified with the spinodals
of bulk matter. Because AT, is a precisely defined seg-
ment of the T axis, we can safely infer that there are
sharp limits to spinodals.

We close with a comment regarding fluctuations,
which we have neglected. This neglect allows us to
separate the full problem into the part treated here,
which shows that there are indeed states defining the spi-
nodals, that become the reference states with respect to
which fluctuations can be examined, and another part
not addressed here, which asks how the fluctuations

around a state on a spinodal influence the lifetime of a
system caught in that state. The connection to the prob-
lem of phases in contact is, of course, made by studying
the fluctuations associated with the interface, in contrast
to the fluctuations required to nucleate the dominant
phase within a homogeneous metastable phase. This is
still a third part of the problem, which has already been
investigated.® The explicit behavior of small clusters will
be described in a fuller report. Perhaps the most chal-
lenging problem we leave open now is finding necessary
conditions for AT, to remain finite and nonzero.
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