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Microscopic Observation of Order-Parameter Fluctuations in Critical Binary
Fluids: Morphology, Self-Similarity, and Fractal Dimension
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We report what we believe to be the first direct visual observations of order-parameter fluctuations
near a critical point. The observation has been made in a number of binary fluids which belong to the
same universality class as the 3D Ising model. New properties can be investigated, in particular, the
morphology of the fluctuations when they are considered as clusters. This analysis has demonstrated the
self-similarity of the clusters and provided a measurement of a fractal exponent Df =2.8+'0.1.

PACS numbers: 64.60.Ak, 05.40.+j, 05.70.Jk

A large number of experiments dealing with the criti-
cal behavior of gas-liquid and binary fluids systems
(which belong to the same universality class as the 3D
Ising model) has been performed and go back to over a
hundred years. Many of them are scattering experi-
ments. It is very surprising that, except for an attempt
by Debye and Jacobsen, ' no observation of the order-
parameter fluctuations in direct space have been report-
ed. However, the direct observation of critical fluctua-
tions may help to answer basic questions such as, e.g. ,
the possible correlation between thermal and percolation
critical points. This connection rests on a precise cri-
terion to define clusters starting from fluctuations, and
this up to now is lacking. We present here the results of
microscopic observations of concentration fluctuations in

a number of binary fluids (Fig. 1). The concentration
difference M c —c„with c, the critical concentration,
is the order parameter. Fluctuations appear as domains
whose intensity is different from the mean intensity of
the picture. These fluctuations are detectable only when
the system is close to criticality. The fact that the ulti-
mate picture element (pixel) is greater, or at best equal,
to the correlation length (g) of the critical fluctuations
implies that the fluctuations extend on a range larger
than g. However, this surprising observation agrees with
critical-point phenomena as reported below. This
justifies undertaking a detailed investigation of the fluc-
tuations morphology which appear to be self-similar with
a fractal exponent Df 2.8.

Experimental. —The binary mixtures are prepared at
critical concentration by weighing the components
directly in the experiment cell; the relative error on this
concentration, including that on c„is of order 10
The components are of the best available commercial
quality. The cell is made of fused quartz, with two
parallel 20-mm-diam optical windows separated by a
5.00-mm spacer for observation. It is immersed in a wa-
ter bath with permanent filtration giving a temperature
stable to within ~0.2 mK over several hours. The opti-
cal setup is the same as already described in Ref. 2, how-

ever, the light scattering part was not used. It is basical-
ly formed of a white-lamp source which provides a near-
ly parallel beam at the level of the sample and of a
high-quality photo lens (50- or 100-mm focal length, 1.0
or 2.0 aperture number). This lens directly forms a
magnified image of the fluid on the sensitive surface of a
video camera (Newicon). This camera is connected to a
U-matic video tape and/or to a computer for image
analysis. The analog-to-digital conversion is performed
with 64 levels over 256X256 pixels. All further calcula-
tions are performed within 16 bits accuracy. The use of
more monochromatic light by means of a yellow filter
does not change the results; laser light, because of its
large coherence length, blurs the image through many
interference patterns. It must be noted that a study in
direct space is hampered by specific problems. The reso-
lution remains limited to a dimension of order the wave-
length of light, that is of order 1 pm; complementarily
the field of view is also limited, typically to a few 100
times the resolution. Moreover, the image that has to be
analyzed is two dimensional, and can be, according to
the depth field, either a section or a projection, or both,
of the 3D object. In this study the large aperture angles
of the lenses ensure that the depth of field remains of or-
der of the resolution, and the image can be considered as
a mere 2D section of the 3D system.

The formation of the image is due to the interference
of the transmitted beam with the very intense light (Is)
that is scattered by the refractive index fluctuations at
small angle (8). Indeed at the small angles Is varies
with the transfer wave vector K as Is(K) —K —0
The small refractive index modulations always remain
proportional to the concentration fluctuations, that is to
the order-parameter fluctuations SM(r) (here r is the
space variable). The above arrangement is called
"heterodyne, " and allows phase modulations to be con-
verted into intensity modulations on the video tube plane
(x,y). This interpretation of the image formation has
been checked by comparing the same fluctuations pat-
tern obtained this way and by using a strioscopic ar-

1152 1989 The American Physical Society



VOLUME 63, NUMBER 11 PHYSICAL REVIEW LETTERS 11 SEPTEMBER 1989

rrrrrrr)rrrrrrrrrrrrrr rrrrr)rrrrrrr rrrrrrr rrr r rrrr 'rrrr rrrrrrrrrrrrrrrrrrrrr. ;:;:-rr rrrrr, %rr rrrr rrrrr r rr rr. ::

FIG. 1. Pictures of concentration fluctuations in a binary
fluid of isobutyric acid and water: (a) photos at T —T, =1 mK
and (b) 16 mK (the bar corresponds to 40 pm); (c) a picture
at 1 mK digitized with two intensity levels (black and white)
around a threshold which is here the mean intensity. This
method allows the fluctuations to be considered as (black and
white) clusters.

rangement ("homodyne"), where it is the square of the
fluctuations which is detected. With i(x,y) the detected
intensity, and I(0)

~
E(0)

~
the transmitted intensity

at K-O, one can write i(x,y) —I(0) cs:
) E(0)

~
SM(x,y)

at first order in bM. The fluctuations of intensity
[Bi (x,y)l that are detected on the video tube therefore
reproduce the fluctuations of the order parameter in the
optically conjugated plane. These fluctuations are, how-
ever, integrated over a volume v defined by the product
(pixel area) && (depth of field). The intensity of a pixel is
thus, Bi(x,y) ee(bM(x, y)), . Here () denotes a spatial
average. Typical photos at different temperatures are
shown in Fig. 1. Useful information can be obtained in a
practical range T —T, 1-20 mK, where T is the abso-
lute temperature and T, is the critical temperature. Al-
though the contrast of these fluctuation patterns vanishes
at large T, their aspect does not qualitatively change.
Note that before analysis, each of these pictures has to
be corrected for the parasitic modulations due to the spa-
tial response of the tube, the inhomogeneity of the in-
cident light, dusts on the windows, etc. Since the modu-
lation by the fluctuations is small compared to the aver-
age intensity, a first-order correction consists in subtract-
ing an image taken under the same conditions but at
higher temperature (T—T, 40 mK) where the fluctua-
tions are no longer visible. Tests have been performed in
a number of mixtures: nitrobenzene-n-hexane (NH),
isobutyric acid-water (IW), lutidine-water (LW), deu-
terated cyclohexane-methanol (C M ), and cyclohex-
ane-deuterated cyclohexane-methanol (CC*M). The
refractive-index difference of these components varies
over a large scale. All these systems supported, however,
the same observations. We will report here only the re-
sults obtained with the IW system, whose relevant pa-
rameters are T, -299 K, c, -0.389 (mass fraction of
acid), and correlation length g -3.6[(T—T, )/T, j ' A.

Fluctuations and critical point phen-omena The.—
contrast of the image modulations is very low, and we
checked carefully that they were really caused by the
order-parameter fluctuations. In order to demonstrate
their bulk origin, we looked at different planes in the
bulk and also stirred the system. We also systematically
changed the concentration of the mixture around c,;
these fluctuations disappears when

~ c,
~

) 5 x 10 2. The
dynamics of such fluctuations are striking; they develop
and vanish at a rate which is a function both of their size
and of the temperature. If one selects a fluctuation
wavelength (A) by allowing only the light scattered at
E 2x/A to form the image (e.g. , by putting a mask
with an ex-centered pin hole in the focal plane of the
lens), the corresponding typical frequency goes to zero
with decreasing K and decreasing T —T, . This is in full
agreement with critical dynamics. We did not investi-
gate this aspect further because the information that can
be obtained seemed to be the same as those inferred by
light scattering techniques. We stress that the shortest
relaxation time involved in our analysis (60 ms for A of
the order the optical resolution and T —T, 16 mK)
remains larger than the integration time 40 ms. In fact,
the quantity (BM(r)), can be considered as a "block spin
variable" where the order parameter is averaged over v.
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nR- g [(xo —x;)'+(yo —y;)']
M s-i (2)

The fluctuations we observe are the remaining critical
fluctuations once renormalized at the scale v', and
since this scale is still of order g, it is not surprising that
fluctuations are detected. Since the image intensity
bi(r) is proportional to the order-parameter fluctuations
(bM(r)), the probability distribution of b'i, i.e., P(bi),
can be related to f through,

P[bi(E)] -P[(bM(r)), ]

-exp[ —(I/keT)F[(bM(r)), ]j, (1)
with kg the Boltzmann constant and F[(bM(r))„]the
free energy in the volume of investigation (v). It thus
becomes possible to directly determine the BM depen-
dence of F. The result is that P is a Gaussian function,
whose width is temperature dependent. 2D Fourier
analysis of the pictures was also performed, giving access
to the structure factor of the fluctuations. This quantity
did not reveal any correlation length greater than (. The
existence of nonrandom fluctuations on a scale larger
than g might appear to contradict the ordinary notion of
criticality. However, g is nothing else than the math-
ematical definition of the length over which the fluctua-
tion correlation function has decreased by the factor 1/e.
Correlations at a scale larger than g exist, but they are
rare. As an illustration of this remark, the reader should
compare our Fig. 1 with the Figs. 4-8 of Ref. 5 where
numerical simulations of the fluctuations in a 2D Ising
model are reported. In particular, the dimension of the
block spin variable is comparable to our experimental
resolution. In these simulations, one or two fluctuations
20 or 50 times longer than the correlation length are
clearly evidenced.

Fluctuations morphology. —Fluctuations are evi-
denced as local intensity deviations (bi) from the aver-
age intensity of the picture. This quantity is defined as
the intensity for which the histogram is maximum. The
shape of a fluctuation can be, therefore, determined by
dividing the image into regions where bi & 0 (say white
region) and regions where bi & 0 (say black region). In
this case (Fig. 1), the black or white regions equivalently
appear as being formed of highly interconnected
domains. If one considers a partition of the picture with
another threshold criterion, e.g. , 6i & Sip, one forms a
minority region (white if bi p & 0), where interconnectivi-
ty has been lowered, and a majority region (black if
bi p & 0), where it has been increased. The choice of bi p

defines a fluctuation as belonging to the minority region.
This procedure has the advantage of allowing various
definitions of clusters to be given, the number of clusters
decreasing when Bio increases. A procedure of explora-
tion of each domain has been developed, which deter-
mines for a domain including n pixels (x;,y;) of center of
mass (xo,yo) a radius of gyration,
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FIG. 2. Mass of clusters vs the gyration radius, showing the
self-similarity of their morphology. Typical data at two tem-
peratures are reported, with typical intensity thresholds in
brackets. These are expressed as deviations from the average
intensity in the units of the fluctuation histogram full width.
All data overlap, and for clarity they have been shifted by one
decade.

and its mass M n Self-sim. ilarity of the domains is re-
lated to the existence of a power-law dependence be-
tween R and M: M cx: R I, where df is a fractal dimen-
sion. In order to check our procedure, we considered
self-similar compact domains where df was expected to
be 2 (dimensionality of the image). We formed the im-
age of a set of ten black disks of different radii, which
was then submitted to the standard procedure (digitiza-
tion, calculation). A power-law behavior has also been
found and a least-squares fit provided the value for the
exponent: df 2.00+ 0.05. When Sip 0, for all tem-
peratures, a power law has been obtained over nearly
four decades, the largest domain having a gyration ra-
dius of order of the field of view. One finds for T —T,
-1-20 mK (Fig. 2): df-1.8~0.1. Here the uncer-
tainty has been estimated from the analysis of several in-
dependent pictures. It appears that the exponent is not
temperature dependent. When Bio~0, then the power
law M ~R still holds, but the extension of the largest
domain is reduced. For thresholds bi p e ]0-0.5], in units
of the full width of the fluctuation intensity histogram, a
value slightly smaller is obtained, df =1.7~0.1. Since
the pictures that we have analyzed can be considered as
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2D sections, we can deduce the fractal dimension (Df) of
the 3D fluctuations through the relation: Df df+1
-2.8 ~0.1 (bio-0). Note that deviations from this re-
lationship could be caused by the finite resolution of the
optics and the fact that experimentally the section is not
perfect. Its validity under our experimental conditions
has been checked by varying the resolution and the depth
of field by a factor of 4. No changes have been detected
in the self-similarity of the domains and the value of df.

Discussion. —In terms of percolation phenomena, the
occurrence of an infinite cluster can be associated with
the divergence of the fluctuations near the critical point.
For this purpose, a precise (and somewhat formal)
definition of the clusters was made, which allowed
considering the fractal nature of fluctuations as resulting
from the percolation behavior. The corresponding frac-
tal exponent so deduced is Df D —P/v-2. 5 for the Is-
ing model. (The classical Ornstein-Zernike form of the
structure factor, with a tail in E, is caused by the po-
lydispersity of the clusters. ' ) The result Df =2.5 has
been established at the critical point and cannot prob-
ably directly be compared with ours (Df -2.8), deduced
in a kind of "crossover" range. Nevertheless this region
keeps track of criticality, not only qualitatively, by mak-
ing the order-parameter fluctuations observable, but also
quantitatively, the fluctuation morphology being charac-
terizable by a fractal exponent. Note that our procedure
to determine fluctuations with respect to the threshold
bio means that we use a deterministic criterium that re-

jects the too big clusters. This is also the philosophy
adopted by Coniglio and Klein with the difference they
have chosen a probabilistic criterium. Both analyses
show that no single definition of fluctuation exists. We
have chosen the simplest procedure but refinements can
be found in the literature. "
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