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Relativistic Solitons and Shocks in Magnetized e -e +-p + Fluids
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A new type of relativistic magnetosonic soliton, which is electrically charged with a gigavolt potential,
is found to exist in a magnetized electron-positron-proton plasma. Relativistic collisionless shocks result-
ing from such solitons can carry an even larger electric potential at the shock front. GeV electrons and
positrons in some active astrophysical sources may be produced due to acceleration by these electric
fields.

PACS numbers: 95.30.Qd, 52.35.Sb, 52.35.Tc

It is commonly believed that in some active astrophysi-
cal sources the plasmas consist predominantly of elec-
tron-positron pairs and the plasma motion is relativistic.
For example, flows emanating from pulsars are relativis-
tic and pair dominated, and may deliver a sizable frac-
tion of the pulsar rotational energy into the surrounding
nebulae. ' Energetic jets also appear to be commonly
emerging from compact objects. High-resolution very-
long-baseline-interferometer radio maps suggest that
relativistic outflows exist within several light years from
the cores of the active galactic nuclei (AGN), and some
jets can even remain relativistic out to several thousand
light years. On the other hand, a cascade of e -e+
pairs has become an attractive scenario for explaining
the fairly universal radiation spectra of AGN's. If that
is true then a large population of pairs in the AGN's will
be inevitable, and shocked pair plasmas due to relativis-
tic accretion and ejection will be commonplace.

Radio emission from these sources is probably the re-
sult of synchrotron radiation. For a typical magnetic
field strength, of order microgauss to milligauss, a
Lorentz factor of order 100 to 1000 for electrons is re-
quired to account for the radio frequency. It has been a
puzzle as to how a large amount of GeV electrons should

commonly emerge. ' Plasmas in these astrophysical set-
tings are collisionless on the time scale of interest, and
thus collisionless shocks or nonlinear waves may well be
responsible for the electron acceleration. The classical
picture for the development of collisionless weak shocks
is through the formation of solitons, where the nonlinear
steepening is balanced by the plasma dispersion. When
the soliton amplitude approaches some critical value, a
strong field gradient develops, which then couples to dis-
sipation and a shock can form. A detailed study of rela-
tivistic nonlinear waves in a pure e -e+ plasma was
conducted by Kennel and Pellat, in which various waves
were analyzed and the dispersion relations derived.
Magnetosonic solitons and shocks in a pure e -e+ plas-
ma were found to be charge neutral. ' Although pairs
are likely to be the dominant constituents of the plasmas
in strong sources, minority protons must also exist. In

this work we confine ourselves to the regime where pro-
tons dominate the mass density, but not the number den-
sity, of the plasma. We discover a new type of soliton
that is charged with a gigavolt electric potential and may
be responsible for the omnipresent radio emission.

Charged soliton. —Cross-field charge separation in a
strong flow occurs because the electrons are tied to the
field lines but the momentum-carrying protons slip
across the field lines on the length scale comparable to
the proton inertial length. In a nonrelativistic flow, elec-
trons usually can compensate for their inability to move
across the field by sliding along the field to catch up with
the protons and shield out the electric field, if the flow is
not exactly perpendicular to the field lines and is also
slow enough, i.e., a subluminal (along the field) flow.
However, in a relativistic flow, protons move too fast for
electrons to follow; therefore a charge-separation electric
field can be set up. In the following analysis we shall as-
sume a cold-fluid theory. We let all species have the
same flow speed far upstream, where the flow U]x and
the magnetic field 8]z are uniform. Finally, we consider
only the situation in which the magnetic field is always in
the z direction and no variation in the z and y directions
is allowed.

In the soliton frame, the soliton equation sought can
be derived from the continuity and the momentum equa-
tions of each species, i.e. , n, U, =N~U~, m, U, dU, /dx
=q, [y,E, +(V,/c)B, ], m, U, dV, /dx =q, [y,Ey —(U,/
c)B ], together with Maxwell's equations, i.e., dB, /dx
= —(4tr/c) P, q, n, V„Ey =E~ =const, dE /dx =4tt
XP, y, q,n, . Here a denotes the index for each species,
U and V are the x and y components of the flow four-
velocity, n is the proper density, and N [ and U] are con-
stants, the proper density and the Bow four-velocity far
upstream. Although a finite constant 8„ the z com-
ponent of the velocity, in principle exists, it can be trivi-
ally incorporated and we shall leave it out in this analysis
for the sake of convenience.

To simplify the notation, let n~ =fN~, n+ =(1 f)—
XN+, and n —=N, where f is the number density frac-
tion of protons compared to the number density of elec-
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to the zero-m, limit of the lower hybrid dispersion rela-
tion: co /k, =U~ j(1+k„U~/co~;), where co~; is the pro-
ton plasma frequency. The soliton has parity symmetry:
Up 1Vp +, and b are symmetric and Vp and e„are an-
tisymmetric. Except for the relativistic effects and the
fact that its thickness is determined by the proton, rather
than the electron, inertial length scale, this soliton looks
like the classical soliton of Adlam and Allen.

There exists a critical M&, at which the proton density
diverges. In Fig. 1, the end of each curve represents the
point at which the Sagdeev potential becomes singular
(N=@o). The physical solution can realize this singu-
larity when the end point has a negative value of Q(N).
By setting d@/dg =0, and @=NO we can determine M&,
and the critical-field strengths. It follows that cr, =(y~
—1)/2, b„=(1+2P~/o, ) '~ =1+2/y~, and finally ep,
=P~M~U~c/2(1+ y~). It is instructive to compare these
results with those in a pure e -e + plasma and those in
a nonrelativistic ion-electron plasma. For the former,
M~, =2(l+ y~) and b, =1+2/y~, for the latter, M~, =4
and b, =3. They all agree in the nonrelativistic limit;
particularly surprising is the agreement between the crit-
ical values of the two relativistic solitons, since they have
very different natures.

Beyond the critical Mach number, d@/dg can never
return to zero before encountering the singularity, a fact
clearly demonstrated by Fig. 1. One can further show
that the spatial structure of the singularity behaves as
b —b, —

~
x ~', e —e„—(x (', and U~ —(x )'~, where

b, and e„—=E,/B~, are the values of b and e„at the
singularity. The electric potential + and the electric
field [—Q(&)]'~ increase with the Mach number (Fig.
1); b also increases accordingly from Eq. (2), in contrast
to the charge-neutral solution for which b —1 remains
small, of order 1/y~. This distinction becomes relevant
when one is concerned with the immediate upstream con-
figuration of a shock.

Charged shock. —Above the critical Mach number
collisionless shocks can arise, and the Auid solution may
be valid only in part of the upstream region. We now
wish to examine to what extent the fluid solution be-
comes contaminated by the kinetic effects of the shock,
in an attempt to estimate the lo~er bound for the electric
potential predicted by the Avid theory. For a pure e
e+ plasma, Alsop and Arons proposed that a reflected
flow, a kinetic effect caused primarily by the magnetic
force, ' could avoid the fluid singularity. In our case, the
electric force can also contribute to reflection of the in-
coming protons, similar to what has been observed in the
Earth bowshock'' and studied theoretically. ' The ra-
tionale for our estimation of the validity of the Auid

theory is based on the understanding that no information
should propagate faster than the shock in a Auid; hence
particle reflection, a kinetic effect, is the only means to
inform the upstream field of a change. The extent to
which this can occur is roughly one proton gyroradius
upstream of the fluid singularity. When this length is
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much smaller than the length scale of the fluid soliton,
the valid region of the fluid solution can extend up to the
immediate neighborhood of the singularity. However,
when the opposite is true or even when the two lengths
are comparable, the fluid solution will fail entirely.
Therefore, the criterion that these two lengths be equal
defines a second critical Mach number M&, 2, beyond
which the electric potential drop predicted by the fiuid
theory is not a reliable estimate.

The existence of M~, q is a relativistic phenomenon, '

in that the soliton length can exceed the proton gyrora-
dius only in the case of sufficiently large y~, as already
suggested by the definition of g after Eq. (5). For large
y~, the electric potential is far too weak to stop the in-

coming flow and the particle reAection relies primarily
on the magnetic force. The gyroradius must be evalu-
ated using the downstream, rather than the upstream,
proper magnetic field, an important distinction pointed
out previously by Alsop and Arons. Equating the pro-
ton gyroradius so determined with a numerically deter-
mined soliton length, defined as p,„/E,„, we can fix
the second critical Mach number. A summary of the re-
sults is listed in Table I. As is clear in Table I, the elec-
tric potential energy can be up to tens of GeV but is still
too small compared with the incoming proton energy to
contribute to proton reflection. Note that the listed elec-
tric potential is simply an estimate of the lower bound; it
is not clear to what extent the electric potential can con-
tinue to increase beyond the second critical Mach num-
ber.

Astrophysical implications. —In this section, we will

confine ourselves to discussing relativistic flows. An in-
teresting point raised earlier is the possibility of electron
acceleration by the charge-separation electric field of the
soliton. Not every soliton can survive to develop into a
large-scale shock, and hence it is likely that the small-
scale solitons and shocklets, riding on the large-scale
background Aow, outnumber large-scale shocks to pro-
duce "diffusive heating" in active sources. We find that
each relativistic soliton can be electrically charged up to
a potential drop of approximately 1 GV across a width of
order of the proton gyroradius (U~M~c/eB).

%'e have so far analyzed only the perpendicularly
propagating soliton. If the magnetic field is oblique to
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the direction of propagation, i.e., 8 &0, this type of soli-
ton can survive only when the phase velocity along the
magnetic field exceeds the speed of light. In such situa-
tions 8, can be Lorentz transformed away, and in this
frame the analysis given above remains unchanged ex-
cept that the z components of the velocities are not zero,
yielding a much larger Lorentz factor. By contrast, if
the phase velocity along the magnetic field is subluminal,
then E,, can in turn be transformed away so that the
upstream flow is along the magnetic field; since e and
e+ are now able to catch the wave along the magnetic
field, the electric potential drop can no longer be large
across the soliton (or wave). That is, ep changes from
the GeV scale to an MeV (or y~m, c ) scale as the prop-
agation changes from superluminal to subliminal along
B.

Precisely owing to the superluminal nature of this type
of soliton, no Landau damping should occur and the soli-
ton must propagate with little dissipation. The soliton
may, however, become unstable and evaporate. This
may occur when the soliton propagates into a region of
decreasing Alfven speed where it steepens and forms a
shocklet, or when the soliton propagates into an environ-
ment that changes the direction of propagation from a
superluminal one to a subluminal one, during which pro-
cess the GeV electric potential energy must be released.
Instabilities associated with the development of a shock-
let may be caused by the relative drifts between electrons
and protons. They may lead to electromagnetic fluctua-
tions inside the soliton, such that a sizable random po-
tential drop along the field lines occurs, thereby irreversi-
bly accelerating particles. To calculate the available en-

ergy, the energy flux per soliton in the laboratory frame
(E,. =0) can be shown to be

(Tol)' 2[(l +P2)Tol P (TOO~ T Il)]

=cP~ y~ B~ (b 1 )/4' cy~B(/rr,

independent of f, so long as f&) 10 . If solitons occupy
a volume filling fraction, for of the entire plasma, and if
a substantial fraction of the soliton energy can be depos-
ited with electrons, then an average energy flux of order
f, , (T ')', carried by GeV-scale electrons, emerges. Note
that energy density of energetic electrons [—f,, (T ')'/c]
is a factor 8f, , y~ of the magnetic energy density U~
(=B~/8rry~) That is, for. a mildly relativistic flow, say
y~ =5, and a reasonable volume filling factor f,, =10
the estimated electron energy density can be in equipar-
tition with Ua. (Energy equipartition is commonly as-
sumed to estimate the electron energy density in syn-
chrotron sources. ) Furthermore, if the synchrotron
emission accounts for most of the radiation flux given out
by these electrons, then the emission power per volume '

is 2X10 f, y~ crTU&/m, c, with a. critical frequency a fac-

tor (M~/m, ) of the nonrelativistic cyclotron frequency,
where o.T is the Thomson scattering cross section.

For large-scale relativistic shocks, electron accelera-
tion at the shock front has a profound implication for
first-order Fermi acceleration. Traditionally, electrons
are regarded as not capable of being shock accelerated
because of their long mean free paths and rapid radia-
tion cooling. Therefore, to have electrons undergo ac-
celeration as eA'ectively as protons, electrons may need to
have a GeV energy to begin with. We suggest that the
& GeV/particle free energy stored at the turbulent shock
front and sustained by the impingement of an inflow may
well be a natural battery for injecting high-energy seed
electrons.
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