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A consistent method for the perturbative calculation of scattering amplitudes in hot gauge theories is
developed. It involves the resummation of a subset of thermal fluctuations, termed hard thermal loops,
into effective propagators and vertices. The damping rate of a heavy fermion is computed as an exam-
ple.
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The properties of QCD at a temperature T are of im-
portance for understanding the collision of nuclei at ul-
trarelativistic energies. ' Attention has focused recently
on the properties near equilibrium of "hot" QCD, well
into its chirally symmetric, deconfined phase. Particu-
larly confusing is the infrared limit in perturbation
theory: On its mass shell both the sign and the magni-
tude of the gluon damping rate appear to be gauge
dependent.

In this Letter I argue that whenever a quantity is cal-
culated perturbatively in a hot gauge theory, sooner or
later an infinite subset of diagrams, nominally of higher
order in the loop expansion, contribute to the same order
in the coupling constant g. These higher-loop diagrams
are isolated and resummed into an effective expansion
which includes all effects to leading order in g.

I start by distinguishing between hard and soft mo-
menta. Let an external momentum for a diagram be P",
P"-(po,p), p- ~p(. In imaginary time, po is an in-
tegral multiple of xT; an amplitude in real time is ob-
tained by analytically continuing each po to po= —iso,
with ro a real, continuous variable. A momentum is
defined as "soft" if co and p are of order gT; a momen-
tum is "hard" if either is of order T. The only soft lines
in imaginary time are bosons with zero energy, but for
amplitudes in real time, both boson and fermion lines
can be soft.

When any external leg is hard, loop corrections to the
tree amplitude are suppressed by at least one power of g.
If every leg is soft, though, there are loop corrections
which are in magnitude g T /P times the correspond-
ing tree diagram. These graphs, which I call "hard
thermal loops, " arise from one-loop integrals in which
the loop momentum is hard. At hard P, hard thermal
loops are simply part of the usual perturbative correc-
tions, but for soft P they are as important as the tree dia-
gram. Diagrammatically, hard thermal loops are pro-
duced by tadpole graphs and by the contribution of
thermal pairs. In the latter, one member of the pair is
absorbed from the thermal distribution —say with energy
Ek—and the other emitted into it, with energy E~ k (k
represents the loop momentum). Thermal pairs produce
energy denominators like ipo+EI, Ep —k' Even at hard

k this denominator is soft, =ipo+pcos8, and gT over it
is of order 1. This is very different from zero tempera-
ture, where only emission and not absorption is allowed.
At T-O, the energy denominators are like ipo Ek-

E~ k
—This is. hard if k is, and gT over it is of order g,

not of order 1. Thermal pairs generate a discontinuity at
spacelike momenta below the light cone, p~ e~ —p,
which is Landau damping. At high momentum, the dis-
tribution functions which accompany absorption are
Boltzmann type and so exponentially damped; thus the
integrals which produce thermal loops are ultraviolet
finite.

For a (massless) scalar theory with quartic interac-
tions equal to g, the hard thermal loop in the self-
energy is a mass term, m, —g T . ' In hot QED, the
hard thermal loop in the photon's self-energy was evalu-
ated first by Silin; in hot QCD, the hard thermal loops
in the quark and gluon self-energies were computed ini-
tially by Klimov and Weldon. ' For the scalar self-
energy only the tadpole diagram contributes to the hard
thermal loop, but in gauge theories both tadpolelike dia-
grams and thermal pairs contribute. Since the Landau
damping of thermal pairs operates from co p down to
—p, the fermion and gauge self-energies are nontrivial
functions of momentum, as in Eq. (1). For instance,
while the effective fermion and gauge propagators
formed from these self-energies have mass shells which
lie above the light cone by order gT, the effective mass
shells do not have a relativistically invariant form.

For scalars, the only hard thermal loop is in the two-
point function; e.g., the running coupling constant varies
as the logarithm, and not as a power, of T. In gauge
theories there are an infinite number of hard thermal
loops: For QCD, between N gluons, and between a
quark, antiquark, and N —2 gluons, at all N~2.
These are due to thermal pairs, and so like the self-
energies they are nontrivial functions of the external mo-
mentum.

Consider now amplitudes which are g times smaller
than those at tree level. These diagrams typically receive
contributions from graphs in which at least some of the
virtual lines have soft momenta. Since over soft momen-
ta hard thermal loops are comparable to tree diagrams, a
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result is only complete after they have been resummed to
all orders in the loop expansion in all possible ways. For
soft legs it is necessary to use an effective propagator
which includes the hard thermal loop in the self-energy.
Likewise, if all of the momenta going into a vertex are
soft, an effective vertex is needed, which includes both
the tree vertex and the hard thermal loop. ' In a scalar
theory this is trivial: All that is needed is to replace the
bare propagator, 1/P, by 1/(P +rn,2). For gauge
theories, the effective propagators must incorporate the
self-energies of Silin, Klimov, and Weldon exactly; more-
over, many vertices are effective, and contain hard
thermal loops.

With hard lines, or for a vertex in which any leg is
hard, bare quantities suffice at leading order. Spe-
cifically, this includes everything inside a hard thermal
loop. This guarantees that the process of resummation is
consistent: While some loop effects are of order 1 at soft
momenta, they arise entirely from hard loops. Correc-
tions to a hard loop are small, down by order g.

These complications are special to hot theories, and do
not occur in the cold limit. In hot theories the only scale
that cuts off infrared divergences in loop diagrams is ra-
diatively induced, of order gT, which is small relative to
T. Presumably, hot fermion and gauge theories are so
much more intricate than scalar theories because the
former transform nontrivially under the Lorentz group,
and in a thermal distribution the Lorentz symmetry is no
longer manifest.

To illustrate the resummation of hard thermal loops,
consider the effective gluon propagator. The contribu-
tions of the hard thermal loop to the gluon's longitudinal

and transverse self-energies are

bII i- —3m' Qi
lpo

, p

b'IIt —mg Q3
3 2 lpo

5 g
Epp

, p
5
3

mz —gT is the gluon "mass": m~ =(N+Nf/2)(gT) /9
for an SU(N) gauge group with Nf fermions in the fun-
damental representation. Qi and Q3 are the Legendre
functions of the second kind, and appear often in hard
thermal loops.

The hard thermal loops of Eq. (1), and for the quark
self-energies, are the same in covariant and Coulomb
gauges. It is surprising to find that these hard
thermal loops are gauge independent, for while the mo-
menta must be soft, they need not be on mass shell. Of
course, the effective propagator changes with gauge. In
Coulomb gauge, 8;A' =0, the effective gluon propagator
is woo= Ai, Ao; =0, and *&;J=(b'j p'pj/p )*A—g,

with hl =1/(p —BIII) and 6, =1/(pii+p —SII, ).
Given the nontrivial momentum dependence of the

effective propagators and vertices, an important question
is how to compute with them in any practical sense. In
ordinary perturbation theory the tedium of performing
discrete sums over the Euclidean po can be avoided by
using a "noncovariant" approach. This method can be
generalized directly to the effective expansion. Propaga-
tors that depend upon po and p are Fourier transformed
into functions of the Euclidean time r and p. This pro-
duces a spectral representation for the *5's:

+ OO P Oo

dl, (r,p) T g e ' *AI, dro*pl, &(ro,p) j[1+n(ro)]e '+n(ro)e+ 'j .j~ —oo

pp 2''T

(2)

n(ro) I/[exp(ro/T) —1] is the Bose-Einstein distribu-
tion function, and *pi, is the spectral density, discontinuities. For nearly static gluons, co «p,

*pi i (ro,p) pPi'(roi, i (p),p) 8[ro roi, i (p) ]

+ '
pid', "(~o,p) e(p —~o),

'pt'"(co, p) = 2
3 mg cop

2 2 (p2+3m2)2

with 8(x) -0, 1 for x &0, x & 0. Each *5 has a single
pole above the light cone, lying on the mass shell
ro col, (p), with residue pP,'. The discontinuity *pi',"
below the light cone is Landau damping.

The usual transverse excitations of a gauge field are
given by the transverse pole: It has a mass mg —gT, with
co, *p,"'-1 for all p. The longitudinal pole is a collective
excitation: Although it also has a mass of order gT, its
residue is only significant when p —mg, and vanishes ex-
ponentially for p && mg.

For the damping rates, what are most important are
not the quasiparticle excitations in the *6,'s, but the

disc(~ p) s3 m Np

~-0 4 [p6+ (3zcmg ro/4)']

The eff'ective propagators obey some general proper-
ties. The transverse spectral density is never negative,
*p, ~ 0; in accordance with the equal-time commutation
relations it satisfies a sum rule, fo de(2')*p, (co,p) =1.
Sum rules for other moments of *p, (co,p ) with respect
to ro, and for those of *pl(ro,p), can be derived by using
the analytic properties of *6& and h, I in the complex po
plane.

In contrast to the transverse spectral density, the lon-
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gitudinal density is never positive, pI ~ 0; also, it is only
smooth about zero momentum after an overall factor of
1/p is extracted, as in Eq. (3). The example of an
Abelian gauge field in a background, conserved current
demonstrates that despite the —1/p in pi, its contribu-
tion to physical quantities is infrared finite and of posi-
tive weight. This is because in gauge-invariant quanti-
ties, *6, couples to the spacelike part of the current, and
*h,I to the timelike part.

Fermions are treated similarly. For massless fer-
mions, ' at positive energy (co) 0), the effective fer-
mion propagator has not one, but two branches above the
light cone. One branch is standard: It has a mass of or-
der gT, a residue of order 1 for all p, and chirality equal
to helicity. The second branch is a collective mode: Also
above the light cone by order gT, its chirality is minus its
helicity, with a residue that vanishes exponentially for
p&&gT.

The two branches persist as a bare fermion mass is
turned on. This is simple to compute if the mass m is
soft, of order gT. As m increases from zero, the stan-
dard branch becomes heavier and the collective mode
lighter, but the residue of the collective mode decreases
as well. By the time that m is of order T, the residue of
the collective mode is ~g at all momenta, and its
effects are negligible.

At temperatures T=100-300 MeV in the quark-
gluon plasma, the up and down quarks are essentially
massless, with the strange-quark mass of order T. Thus
the propagation of up and down quarks is strongly al-
tered over soft momenta, and exhibits a collective mode
with flipped chirality and helicity. For strange quarks,
loop effects are suppressed by g, and the collective
mode can be ignored.

Going beyond the self-energies to higher-point func-
tions, the hard thermal loops can be isolated directly if
the bare one-loop diagrams are evaluated by noncovari-
ant means. Braaten and I have explicitly computed the
hard thermal loops for the three- and four-point func-
tions of hot QCD; in the end, they reduce to relatively

simple forms like those for the self-energies, Eq. (1).
We have also constructed generating functionals for the
hard thermal loops of arbitrary N-point functions. Re-
markably, all hard thermal loops are identical in covari-
ant and Coulomb gauges for any value of the soft exter-
nal momenta. Effective vertices are formed by adding
the hard thermal loop to the bare vertex. Like the
effective propagators, these can be incorporated into the
noncovariant scheme; the spectral representation of the
vertices, similar to Eq. (2), has no poles, only cuts from
Landau damping.

In the calculations of the gluon dainping rate in Ref.
2, the gluon is assumed to be at rest on its effective mass
shell, P-0 and fo-ms. The damPing rate is obtained
from terms in the gluon self-energy, H"", that are of or-
der g times the hard thermal loop. In Ref. 2, bare prop-
agators and vertices were used to compute II"", which
gives a "bare" damping rate. The bare damping rate re-
ceives corrections of order 1 from an infinite number of
higher-loop diagrams: Arbitrary insertions of hard
thermal loops within the bare one-loop diagram contrib-
ute to terms in II""that are still of order g.

The "effective" damping rate is computed from dia-
grams in the effective expansion which are topologically
the same as in the bare expansion. At zero momentum
every internal and external line is soft, so effective propa-
gators and vertices are required throughout. The
effective Il"" and the damping rate are again of order g,
but because all hard thermal loops have been resummed,
these results are complete to leading order in g. The
price of resummation is that it is not easy to compute the
effective damping rate for light fields at rest. 7

A problem which typifies the physics of the damping
rate for soft gluons, and yet is computationally much
simpler, is the damping rate of a heavy quark, F. If F
has a mass M ~ T, it is automatically a hard field. Con-
sider the effective one-loop diagram for the self-energy of
F. The propagator for F, and its vertices, can all be tak-
en as bare —the only effective quantity required is for
the soft-gluon propagator, Eqs. (1)-(3). Part of the
discontinuity of this effective graph is

g 2 d k t dfoDiscX~= — frC~TJ 3 g *p;(fo,k)G;8(sco+Ef, EJ, k). —-
softk 2n 3 & 0

(4)

F is assumed to be on mass shell with positive energy:
P" ( —iEp,p), E~ -(p +M ) 'i; Cp is the Casimir for
F, and Gf=y +1, G, =2( —

y +1). In Eq. (4) all
terms that do not contribute to Eqs. (5) and (6) at order

g have been dropped. For example, X~ receives contri-
butions from both soft and hard virtual gluons. By kine-
matics, though, a hard gluon cannot contribute to the
damping rate on mass shell. I also took n(co)=T/fo,
and neglected terms which are down by powers of k/M,
etc.

When F is at rest, p=0, the only way to satisfy
energy-momentum conservation is through the term with

~-+ in Eq. (4), f0 Ek —M=k /2M. This forces the
gluon to be nearly static, so the discontinuities of Eq. (3)
apply. The transverse density *p& produces a term in
DiscX~=y —1. For nearly static gluons the transverse
density is infrared singular, which produces powerlike in-
frared divergences in DiscX+. These contribute solely to
wave-function renormalization, and so are not of physi-
cal consequence. The longitudinal density *pi produces
a finite contribution to DiscX~=y +1. This shifts the
pole in the effective propagator, —iP'+M —Z~, from its
value at tree level, co M, with the shift in the imaginary
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direction proportional to the damping rate. I define the
quantity y—= —Imago/Rero, evaluated at the pole in the
effective propagator, as a dimensionless measure of the
damping rate. At zero momentum,

g'CF Ty=+
p-0 8x M

(5)

Positivity of y demonstrates that F is thermodynamically
stable.

For ease of calculation, at nonzero momentum assume
that F is nonrelativistic, M »p »mg. The terms in Eq.
(4) for s ~ both contribute, with ro = + (E~

EI, )=—Tpkcos(8)/M. Nearly static gluons, co«k,
occur when the virtual gluon is emitted from F near 90,
8=x/2. Integrating Eq. (4) with respect to r0 and 8
about this region, the contribution from the transverse
density produces a logarithmic divergence in the integral
over k. From Eq. (3) the logarithm is cut off above by

rnid, I cut if off below at a mass scale m, s. Then at
nonzero momentum

y=+ ln
C

p~o 8x
Pig pT

m mag
2

Terms in y from other regions of integration, and from
the longitudinal density, are infrared finite, =g (pT/
M ). Equation (6) applies only for p»m~, and crosses
smoothly over to Eq. (5) when p is of order m~.

For nearly static gluons p, (ro,p) in Eq. (3) is in-

frared singular, and p pi(ro, p) infrared regular, be-
cause to one-loop order static electric fields are screened,
but static magnetic fields are not. ' It is expected that
nonperturbative effects screen static magnetic fields over
distances of order 1/g T. ' A spectral sum rule for

p, (co,p)/co can be used to show that 1/m, s is equal to
the magnetic screening length. Hence in Eq. (6),
m~, s cm,~ T, with cm, s a gauge-invariant number of
order 1, and ]n(mg/m, s) =]n(1/g).

The Coulomb gauge was used in Eq. (4), but Eqs. (5)
and (6) are gauge invariant. To show this, form the
two-point 7'-matrix element from ZF by sandwiching it
between two physical wave functions, 7'F -PZFy. The
wave functions P and y are on mass shell, so terms in ZF
which contribute to y survive in TF, while those which
contribute to wave-function renormalization drop out. It
is a textbook exercise to use the bare Ward identities to
show that in the effective one-loop graph for ZF, when

the effective gluon propagator in Coulomb gauge is re-
placed by that in covariant gauge, XF changes, but 7F
does not. A parallel analysis can be used to demonstrate
that at hard momentum (p~ T), on mass shell the

effective damping rates for light quarks and gluons are
gauge invariant; as in Eq. (6), y=+g In(1/g).

Braaten and I have extended the proof of gauge in-

variance to the effective damping rates of light quarks
and gluons, on mass shell at soft momentum. Two-
point V'-matrix elements are formed by sandwiching the
self-energies between wave functions on their effective
mass shell. Although the hard thermal loops are non-

trivial functions of momentum, the effective two-, three-,
and four-point functions which enter into the damping
rates satisfy effective Ward identities identical in form to
the bare Ward identities. The effective Ward identities
are then used to establish that the two-point 7-matrix
elements, and so the y's, are equal in covariant and
Coulomb gauges. The effective damping rates for soft,
light fields are similar to those for a heavy fermion. At
rest, y= +n (gT)g = +g, at soft, nonzero momentum,
T»p » m ~,s, y =+g ln ([/g).

I end by stressing that the effective expansion applies
not just to damping rates, but to the computation of ar-
bitrary amplitudes in hot gauge theories. Notable exam-
ples include the calculation of dilepton production,
transport coefficients, and the development of a con-
sistent kinetic theory.
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