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Neutron Electric Dipole Moment in Lattice QCD
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We present an exploratory computation of the electric dipole moment of the neutron induced by a
CP-violating 8 term in the QCD Lagrangian in the framework of quenched lattice QCD. We find
dN= —4x 10 ' Oecm.

PACS numbers: 13.40.Fn, 11.30.Er, 12.38.6c

Some time ago it was discovered' that a term of the
form (we use a Euclidean metric throughout)

interest is
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could be present in the QCD Lagrangian. Despite the
fact that Xa can be written as a total divergence it can
lead to observable effects due to the existence of the cele-
brated instanton solutions in QCD. Certainly one of
the more dramatic consequences of having such a term
present would be the nonvanishing of the neutron electric
dipole moment. This comes about because of the P- and
T-violating nature of Xa. The nonobservation of an elec-
tric dipole moment for the neutron at a level of 2.6
x 10 e cm puts a severe bound on the magnitude of 0.
Most theoretical analyses favor a value of d~ —10 ' 8
ecm leading to a vacuum angle 8 smaller than O(10 ).
The smallness of 8 is sometimes referred to as the strong
CP problem. There are possible solutions of this prob-
lem, most notably the elegant mechanism of Peccei and
Quinn. Their proposal leads, however, to the existence
of a light weakly interacting pseudoscalar particle, the
axion, which to date has not been observed.

In this Letter we report on a computation of the neu-
tron electric dipole moment in lattice QCD. To put our
calculation into a proper perspective let us quickly review
a few important points about previous estimates of this
quantity. The divergence of the axial current in QCD is
nonvanishing and is in fact proportional to Xg in the lim-
it of vanishing quark masses. This fact can be utilized to
eliminate Xq in favor of a complex phase in the quark
mass matrix by a chiral rotation. There are, in principle,
in6nitely many physically equivalent ways of including
this phase due to the freedom of making further chiral
rotations. However, one particular form of the effective
CP-violating interaction at the quark level can be picked
out on the basis of simple physical arguments. The
answer is bÃcp 8rnyy5y, where m is the reduced
mass of the light quarks in the theory. 8X~p vanishes if
any one-quark Aavor is exactly massless. The quantity of

where Q is the quark charge matrix. Since 8 is small,
treating bXcp as a perturbation is adequate and one is
led to the computation of products of the type

i d~ i&)(Xi bXcp i N), where i%') is an intermediate
state that can be reached from the nucleon via bÃcp.
These matrix elements are calculable in QCD—they are,
however, strictly nonperturbative. Baluni uses the bag
model to compute these matrix elements. Crewther et
al. argue that in the limit rn ~ 0 the intermediate state

i Nrr) dominates and then use an effective AN Lagrang-
ian to estimate the matrix elements. Physically this
means that with a light pion the neutron obtains a dipole
moment by dissociating into a proton and a pion. The
above approaches obviously have some shortcomings.
The bag-model result is sensitive to the value of the bag
radius (d~-mR on dimensional grounds). As to the
other calculation, it is not clear if the pion is light
enough in the real world.

Lattice QCD offers the possibility of calculating the
effect from first principles. We will discuss the uncer-
tainties associated with this approach later on when we
discuss our results. As can be seen from Eq. (1) simply
including Xg in the gauge part of the action is impossible
from a numerical point of view since it is imaginary.
There are no efftcient ways of dealing with complex ac-
tions at this time. We therefore use the following trick:
We imagine having done a chiral rotation in the continu-
um in order to trade Xa for a phase in the mass term.
We then use a lattice regularization of the resulting
Dirac operator —in the present case we use Wilson fer-
mions. Since Wilson fermions have the correct anomaly,
this procedure can be shown to be valid on the lattice
directly. (More generally we can use the CP-violating
Wilson term as well as the CP-violating mass term. In
this case the true 8 is equal to the difference of complex
phases between the two. By the chiral rotation we can
set one of the phases to zero without loss of the generali-
ty. ) Hence we use the following fermion action:

Sp g y(n) [1 —i (1 —
8 x )tan(8) y5] y(n) —tcg P(n) (1 —y„)U„(n) y(n +P )+ $7(n) (1 + y„)U~t (n P)y(n —P ) . —(3)

Note that the 8-dependent term disappears for x —,', i.e., for vanishing bare mass. (Because of the effect of the

1989 The American Physical Society 1125



VOLUME 63, NUMBER 11 PHYSICAL REVIEW LETTERS 11 SEPTEMBER 1989

chiral-symmetry breaking by the Wilson term the pion is
massive at nonzero gauge coupling even though the bare
mass is set equal to zero. By setting one of the bare
quark masses to zero we may solve the strong CP prob-
lem while producing a nonzero pion mass in the contin-
uum limit. ) With this action we go on to use the
quenched approximation; i.e., we compute propagators in

background gauge fields that were generated using the
Wilson action. Note that in the present case the mean-

ing of "quenching" is not unique. One could also com-
pute propagators without any 8 dependence but instead
include a factor of e'~ in the average over the gauge
configurations. Here Q is the topological charge. The
two ways of quenching are obviously not equivalent. We
shall return to this point later on.

To extract the electric dipole moment of hadrons we

chose to use the techniques which had previously been
successfully applied to the computation of baryon mag-
netic moments. ' By modifying the links Us(n)

e~ 'Us(n) and Us(n) t e ~ 'Us(n) t, we introduce
a constant-background electric field in the +z direction.
We will only be concerned with u and d quarks for which

q - —,
' and ——,', respectively. The above substitution

violates the periodicity of the lattice —we keep this viola-
tion small by working with small fields. In this back-
ground electric field we measure the masses of the had-
rons of interest. We measured proton, neutron, p, and

pion propagators. From the difference between spin-up
and spin-down masses in the case of the nucleon, or the
difference in mass between longitudinally and transverse-

ly polarized p's, one can infer the value of the electric di-

pole moment at fixed 8. Only the former is phenomeno-
logically interesting. If the strong interactions break CP
the p will certainly have an electric dipole moment. It
will, however, decay before it can ever be measured. We
therefore simplified our life by computing the meson
propagators only approximately. The relation

y5M '
y5 M 't which one uses in the computation of

meson propagators is violated by terms or order tan(8).
We dropped these terms and therefore do not quote any
numbers for the p. (We can ineasure the meson propa-
gators exactly if we perform one more inversion of the
Dirac operator each time. )

One might be worried that in the presence of an elec-
tric field the usual technique of extracting masses from
zero-momentum propagators might fail. A charged par-
ticle ("quark") accelerates, thereby leading to a t depen-
dence of the "mass. " However, by appealing to the ana-
lytic form of the propagator in an external electromag-
netic field" one sees that to order linear in E only the
mass is modified by the electric dipole moment interac-
tion and thus is independent of t. As a matter of fact the
other effects of E, which may produce a t dependence of
the "mass, " must enter through even powers of E since
they respect P. Fortunately, it turns out that the effect
of acceleration of individual quark to the hadrons is nu-
merically small since the QCD force is stronger than the
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TABLE I. Results for electric dipole moments at P =6.0. R
is the ratio of the proton-to-neutron electric dipole moment.

0.14
0.14
0.14
0.14
0.14
0.1565
0.1565
0.1565

0.2
0.2
0.4
0.4
0.4
0.4
0.4
0.4

Nucleon

Neutron
Proton
Neutron
Proton

Neutron
Proton

2pE

—0.019 (0.018)
0.016 (0.020)

—0.029 (0.018)
o.oso (o.o2o)

—0.029 (0.010)
0.028 (0.020)

—1.7 (0.6)

-l.o (o.3)

electric field we add. It is also noted that a term of the
form yy~y in the action gives an elementary electric di-
pole moment to the quarks. This can also be seen in a
nonrelativistic expansion of the Dirac Hamiltonian. As a
check on our numerical methods we successfully comput-
ed the induced electric dipole moment for a free Wilson
fermion. Both linearity in E of the shift in mass and the
8 dependence of the dipole moment were very nicely
satisfied.

Let us now discuss the QCD calculation. We used an
8 x20 lattice with periodic boundary conditions on both
gauge fields and quarks. All results in this Letter were
obtained by averaging over twelve gauge configurations
separated by 400 pseudoheatbath sweeps. The numbers
that we show below were obtained from simulations at
an inverse gauge coupling of p=6.0. Since the dipole
moment d has the dimension of a length, it is desirable to
go to weak coupling so as to make the dimensionless
quantity d/a big. This may lead to larger finite-size
effects; as a matter of fact, the deconfining transition for
n, 8 is at p 6.02+'0.02. ' We have checked that on
our lattices the spatial Wilson lines average to zero. The
masses of the nucleons are determined by fitting the
spin-up and spin-down propagators to the form
Cie '+ C2e ' with the same mass in the ex-
ponent. This is due to the mixing of the upper and lower
spinor components in the presence of the P-violating
term in the action. We use relativistic wave functions
throughout. The electric dipole moment is computed
from the formula

2d, E-
[m 1(E)—

m 1(0)]—[m 1(E)—m1 (0)] . (4)

The zero-field value of the mass shift must be subtracted
on any finite sample of gauge configurations. '

On a single configuration we found, using x =0.14,
0 0.4, a linear behavior of the mass shift for E less than
0.02. For the rest of the calculation we fixed E to be
0.01. Our results are summarized in Table I. Errors
were computed using the "jackknife" procedure. ' Note
that at 0 0, x 0.14 corresponds to a very heavy quark.
The other value x -0.1565 corresponds to x., (8=0) at
p 6.0. ' The fact that with a small CP-violating term
in the propagator one can run at K, might come in handy
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also in ordinary spectroscopy on the lattice. An extrapo-
lation in the CP-violating "magnetic field" might be
easier than the usual extrapolations to rc, . We are
presently exploring this possibility.

To discuss our data let us concentrate on the 8 0.4
data which have smaller errors. The value for the ratio
of the neutron-to-proton electric dipole moment at the
lower value of x is close to what one would expect on the
basis of a nonrelativistic SU(6) quark model which pre-
dicts R ——,

' . This is interesting. It suggests that the
bulk of the electric dipole moment of the nucleon in our
calculation is just the sum of the quark electric dipole
moments. This is reasonable since we have seen before
that the 8-dependent mass term induces a quark dipole
moment. The sign of this contribution to the neutron
electric dipole moment is opposite to what has been com-
puted in Refs. 6 and 7. This is in agreement with what
has been found in the cloudy bag model. ' At the larger
value of x the ratio seems to be closer to unity. ' Before
we translate our results into physical units we must point
out the following: The quenched approximation as we
implement it underestimates the "pion" contribution to
the dipole moment. This can easily be seen in the hop-
ping parameter expansion. The other way of quenching
that was mentioned before would leave out the quark
component completely. Which contribution is more im-
portant? On the basis of previous experience with the
quenched approximation we would claim that we have
computed the dominant contribution. The part of the
"pion" effect that we neglect is due to dynamical fermion
loops and we feel that it should therefore be small. (Our
quenched approximation includes some of the pion effect.
This can be seen by the hopping parameter expansion.
We would like to thank M. Creutz for pointing it out to
us. ) Apart from the quoted statistical errors there are
systematic effects. We have mentioned finite-size effects
before. At 8 0.4 all masses (including the pion) are
quite large so that the "squeezing" of the nucleons due
to the finiteness of the box is probably not a big problem.
We have tried to extract an electric dipole moment from
twelve configurations at P 5.7 but did not succeed.
This is presumably due to the fact that the lattice spac-
ing is roughly a factor of 2 larger. The same effect can
also be seen in Table I: A factor of 2 change in 8 brings
the signal down to the level of the error. The other
source of systematic uncertainty, the quenched approxi-
mation, was discussed above. One potentially serious
problem could be the oppositely directed electric field at
the boundary of our lattice which exists due to the non-
periodicity of the electric potential. An indication that
this field is not contaminating our results is the fact that
in the nucleon propagator the "forward" and "back-
ward" propagating contributions come in with the same
mass. We have also repeated our calculation at

0.1565, 8 0.4 on five configurations with fixed
boundary conditions in the time direction. We find

2pE —0.2 (+0.04) for the neutron (proton). Both the
order of magnitude and the sign agree with the numbers
quoted in the table.

Let us now estimate the neutron electric dipole mo-
ment in physical units. Since we are working at x,
(8 0) and we are interested in very small 8, we use the
value of the lattice spacing at P 6.0 and x rc, . From
Ref. 14 we find a = 0.58 GeV '. Hence

——e
8 0.029 i4a = —4x10 8ecm.

0.4 2 x 0.01

with an error of 1.4x10 ' 8 ecm. Taken at face value
this translates into a bound of 8 smaller than O(10 ").
The magnitude of the dipole moment is about 100 times
larger than most continuum estimates of this quantity.
Before a serious disagreement can be claimed, the
present computation, which to a large extent should be
considered exploratory in character, must be repeated on
larger lattices. In particular, one must go to smaller 8 to
check that nothing funny happens when the masses of
the particles become smaller. Nevertheless, to conclude,
let us speculate as to the possible origins of a disagree-
ment. Wilson fermions give the correct axial anomaly in
the continuum limit at the expense of chiral symmetry.
Hence mass counterterms are generated leading to a
difference between "bare" and "current" masses. The
dipole moment that we compute is proportional to the
bare mass which does not vanish in the chiral moment.
The continuum calculations, on the other hand, always
involve the current mass which is related to the square of
the pion mass. This leads to an effective chiral suppres-
sion -m relative to our calculation. All this may point
to a rather subtle problem in QCD. If one wants to
define the theory nonperturbatively, a regularization
must be introduced. If this regularization is to treat the
axial anomaly correctly, chiral symmetry must be broken
(Pauli-Villars regularization is a good example).

We would like to thank W. Marciano for suggesting
this calculation and for helpful discussions. We are also
grateful to I-Hsiu Lee for help during the early stages of
this work. Finally we recall helpful discussions with M.
Creutz and G. Valencia. This manuscript has been au-
thored under Contract No. DE-AC02-76-CH00016 with
the U.S. Department of Energy. The computations re-
ported here were performed on a CRAY-2 computer at
the National Magnetic Fusion Energy Computer Center.
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