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Thermal Fluctuation and Melting of the Vortex Lattice in Oxide Superconductors
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The thermal Auctuation of the vortex positions in type-II superconductors with large Ginzburg-
Landau parameter x and weak pinning is drastically increased when calculated from the correct, nonlo-

cal elasticity of the vortex lattice. As compared to the usual (local) elastic result, the mean-square shear
strain and vortex displacements increase by a factor of = (B/B, &) 't2/(1 B/B, 2—) 't (B is the flux densi-

ty, B, i and B,2 are the lower and upper critical fields). The melting temperature of the vortex lattice is

reduced by the same factor.

PACS numbers: 74.60.Ec, 74.40.+k

The melting of the flux-line lattice (FLL) was dis-
cussed in detail first by Fisher' for thin superconducting
films of thickness d much smaller than the bulk magnetic
penetration depth A, . In such films the two-dimensional
shear modulus of the FLL cssd is very small and thermal
fluctuation of the flux-line (FL) positions may become
large enough that the FLL melts at a temperature T
considerably smaller than the superconducting transition
temperature T,. In principle, a bulk FLL should melt
similarly when the applied field 8, is sufftciently close to
the upper critical field 8,2(T), where the shear modulus

css vanishes as (8,2
—8, ) . In conventional supercon-

ductors, however, three-dimensional melting is expected
only very close to B,2, in a range of B, or T which is
practically not accessible since material inhomogeneities
smear the transition as B,z(T) and, more importantly,
since the always present pinning forces vanish only as
8,2

—8, (proportional to the order parameter i y i ).
Recently, Nelson has pointed out that FLL melting

should be observable in high-T, superconductors since
(a) high thermal energies ktt T are accessible and (b) the
shear modulus of the FLL may become very small due to
the large Ginzburg-Landau parameter x = 200. From
Lindemann's criterion one might expect melting to occur
when the root-mean-square thermal average (u ) '/

-(u2+ug)'/2 of the FL displacements u(R~, z) from
their equilibrium positions R~ (z is the coordinate along
the FL's) reaches =a/10 (a is the FL spacing). Nelson
and Seung find for the unpinned FLL

(u ) (u )i~ - (n/4trcssc44) '/
ktt T,

where n -8/pp is the FL density and c44-88 /pp is the
modulus for uniform tilt of the FLL. Here I shall not
consider the influence on (u ) of the pronounced anisot-
ropy of the high-T, superconductors which in Ref. 3 is
estimated to be huge. I only point out that in nearly the
entire field range B,~ 2B, i one has 8=B,. Therefore,
the "local elastic" tilt modulus c44= 8 /pp equals twice
the magnetic field energy which is isotropic. However,
for nonuniform strains with finite wave vectors
k (k~, k, ), u(R~, z) u(k)exp(ik~ R~+ik, z), the

nonlocal elastic tilt modulus, as well as the uniaxial
compressional modulus el| (k) and css in general, will be
anisotropic in anisotropic superconductors. For the cal-
culation of such anisotropic moduli it is essential to know

precisely the equilibrium structure of the FLL, otherwise
they might turn out to be negative.

Also recently, Moore extended Eilenberger's treat-
ment of the distorted FLL (or perturbed order parame-
ter) and found for (u ) an expression similar to (1) but
with c44 replaced by the superAuid density p, . One may
write p, 4c44kh/kttz, where kg =(1 b) '

/A,
—is the re-

ciprocal effective penetration depth and kaz=(2b) /
/g

is the radius of the Brillouin zone (BZ) with b =8/
8,2(T) and ( X/tr Moore. 's result thus differs from
Nelson's (u ), Eq. (1), by a factor of kaz/2k&, =(bx /
2(l —b)]'/2. This factor may become large if tr»1 and
it diverges as 8, B,z(T). The resulting melting tem-
perature is reduced by the same factor.

In this Letter I show that Nelson's and Moore's dif-
fering results follow in a natural way as approximations
from the correct treatment which has to account for the
nonlocal elastic response of the FLL which applies when

2bx =Blnx/8, |is »1. (a) Nelson's (u )=(u )1 fol-
lows in the local elastic approximation which replaces
c44(k) by c44(0) c44 and thus considers only the (too
large) stiffness of a homogeneous magnetic field. (b)
Moore's (u )-(u )„1 follows in the extreme nonlocal
limit which replaces c44(k) by c44kj/k&, this is correct if
kh & k ~ & k az and k, & k ~. This treatment considers
only the (too small) stiffness of the vortex cores (or of
the order parameter); it yields a diverging c44(k) for
k~ 0 as discussed in parts I and IV of Ref. 6, where this
unphysical divergence is removed. I will show that in the
correct expression for (u ), Eq. (5) below, the dominat-
ing contribution comes from large k& values; Moore's
(u ) is, therefore, close to the correct result.

I shall further show in this Letter that an estimate
from the fluctuating shear strain yields much lower melt-
ing temperatures than does Lindemann's criterion and
that T is reduced further if one goes beyond the com-
monly used elastic continuum approximation and if one
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takes short-wavelength compressional waves into account
in &u'&.

The thermal average (u ) may be calculated from the
equipartition principle by ascribing to each eigenmode
(in a finite volume V, with discrete k) the average
thermal energy keT/2. These eigenmodes are strongly
overdamped and thus have no kinetic energy. Their elas-
tic energy is —,

' u, (k)p p(k)up(k), where p,p(k) is the
elastic matrix of the FLL (a,P x,y). This gives
(u, (k)up(k))-kpT&, p'(k) and, after letting V

(2)

y.'p"'(k) -k,kp[c i i (k) —c66]

+b.plk' c66+k,'c44(k)],
where

c(((k) c(1+k /kg) '(1+k /k ) '+c66,

c66=c(1 —b) (Sbx ) 'c~c2,

c44(k) c[(1+k /kg) '+kg/kaz],

(3)

(4)

where the integration is over the BZ and over
& k, & ~. The elastic matrix was derived in a series of

four papers. It is periodic in k space, but for many pur-
poses may be replaced by its (isotropic) continuum ap-
proximation which becomes exact for k «kaz.

with c 8 /po=c44, k~ 2x kg, and k k„+kz+k,
-k~+k, . The constants c~ -1—(2x ) ' and c2-1
—0.58b+0.29b may be replaced by 1 for our purposes.

The moduli (4) apply when the vortex fields overlap
such that each vortex interacts with many neighbors; if
x»1 this means 2/x &b &1 or 48, ~/Inx&8 &8,2.
Larkin and Ovchinnikov have shown that these c~ ~(k)
and c&4(k) apply not only within the Ginzburg-Landau
theory (as in Ref. 6) but at all temperatures 0 & T & T, .
An approximate general expression for c66(T,B,x.) is

given in Ref. 9. At very small inductions b & 1/2x, cor-
responding to a ~3.8k, the interaction with other than
nearest neighbors may be disregarded and one gets
c~~(k) =c~~(0)= 3c66-exp( —a/& ). I shall not write

down these expressions since for such extremely small
8&8,~/inx (or 8, =8,~) the behavior of the FLL is
dominated by even very weak pinning. This statement,
concluded from the always present slight hysteresis of
magnetization curves near 8, ~, applies even to the purest
Nb crystals available. In twin-boundary-free crystals of
high-T, superconductors the flux lines, due to their small
core radius = g, are possibly pinned even by the atomic
structure itself (a sort of Peierls potential). ' Fascinat-
ing decoration experiments "' may help to determine
this pinning force.

Inserting (3) into (2) one gets

kp T t'ksz t'ksz
2 c44k& kp

(u ) 2 dk~k~ dk, c66kJ +
2 kP+kg+k,

(5)

plus a similar term with c66 replaced by c ~ ~ (k); this term
is commonly disregarded but gives a contribution of
similar order as (5) since, for large k, c & & (k) is very
small; one has c~~(kaz) —c66. The k-independent term
of c44(k) [Eq. (4)] has been used to cut off the integra-
tion over k, . It is interesting to note that this term, orig-
inating from the stiffness of the vortex cores, introduces
the BZ radius kaz into the integration over k, . This
constant term follows from the limit k 0 in part IV of
Ref. 6 as

8(8.—8)/po= (8,2 8)I2bx po—= c44kf/kBz

I 4suit (up to a factor =P~ -1.16). This main term,
(u )„~, exceeds (u )~~ by a factor of kaz/2k' as stated
above. The dominating contribution to this nonlocal
term comes from k~ &kaz where c44(k) =c44kg/k&.
The enhancement of (u ) thus comes from the softening
of the FLL with respect to periodic tilt waves with k vec-
tor perpendicular to the FL's (Fig. 1) and not from the
reduced line tension of wavy FL's with increasing k, .
Keeping only this main term in (6), Lindeman's criterion
(u )„~ c a yields a melting temperature

(Ref. 13).
A good approximation to the integral (5) is' [note

that kg c44/kazc66 4/(1 b) is always large]—

T -2kp 'c a n 'kl, (c66c44)

(7)

&u2&=&u2&(
2kBZ C66

~kh' c44

&/2-

4kI,
where

r/2
2b~=&u')(

7t'
bx /2
1 —b

(6)

In (6) the first term (from k, & k~) originates from the
core stiffness, the second term (from k, & kp, ) is (u )Ipc,
and the third term (from k& & kl, ) is just Moore's re-

T (2/3) '~ c po/pokery, (0)x,

and b 8/8, 2(T ). This T is smaller than the local
elastic result by a factor of [2(1 b)/bx ] '~ . Fo—r
c 0.1, A, (0) 2500 A, and x 200, one gets T* 40 K.

A different criterion for the melting of the FLL is that
the thermal fluctuation of the shear strain y of the FLL
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of 0.82. There is no such term in (y ), Eq. (9).
(c) A reduction by nearly a factor of 2 results when in

(2) or (9) the correct elastic matrix is inserted. For k
near the BZ boundary the correct p,&(k) is highly aniso-
tropic. (This should not be confused with the material
anisotropy which I do not consider here. ) p,& is obtained
by replacing in the continuum approximation (3) the
term k,kpc66 by a sum over reciprocal-lattice vectors K
and Q,

kt, kv —
kp, (Q —k) (Q —K —k)p

g~o (Q —k) +kg tt (Q —K —k) +kv

FIG. 1. Tilt modes of the vortex lattice with short wave-

lengths perpendicular to the vortices, 2z/k~ -6a (left) and 2a
(right). For not too small, constant k, the elastic energy is

dominated by the tilt energy which decreases with decreasing
wavelength as 1/k~. The depicted modes give the dominating
contribution to (u ), Eq. (5), and in addition possess maximum
probability to cause vortex cutting.

reaches a critical value y, . One has

(y ) kBT (d k/8' )[k~p„„'—2k k~p ~'+k p~~'j,

(9)

&y & =kBT„(d'k/8'')k3 [c66k3. +c44(k)k,'l

= kBTkBZ/16&kg(c66c44) '
&y &„l. (10)

The criterion (y )„'( y, reproduces the T [Eq. (7)] if
one puts y, 2x' 3 ' c 0.27. This value of y, ap-
pears rather high. The critical shear stress required to
deform an atomic or FLL plastically, z, = c66/30, ' sug-
gests a smaller value, y, = 30 which would reduce the
melting temperature (7) by a factor of 65. A somewhat
larger value y, = 2'0 to &'p appears more realistic since
the fluctuating shear is not uniform. Temperature-
induced local plastic deformations (small dislocation
loops) possibly heal (the loops collapse) if they stay
below some threshold concentration, amplitude, or exten-
sion. Stable defects may result when FL's cut and
reconnect, a process requiring little activation energy. '

Temperature-induced disorder may set in when some of
the Auctuating FL's touch and cut irreversibly. Smaller
values c= 2'0 appear thus more realistic in the Lin-
demann criterion. This and the shear-strain argument
hint at a considerably smaller T* value, = 10 K for the
above example.

Larger (u ) and (y ) and thus lower T are also ex-
pected from the following arguments:

(a) At b & 0.5 the factor c2 in c66 [Eq. (4)] reduces
T* by a factor of 0.84.

(b) The term containing c i i (k) gives a contribution= (2/3x)(u )„1 to (u ) and thus reduces T* by a factor

plus a constant which follows from p,p(0) =0. The con-
stants ag a „are coo 1, aio —0.3032, a~~ =0.0804,
a2o 0.0525, etc. The expression (11) follows from the
Ginzburg-Landau theory for b & 0.6. If one puts
att bK o then (11) applies to b & 0.25 and approximate-
ly to 0 & b & 1. The anisotropic c66(k) at the BZ bound-
ary (for k K&o/2 and k Kl &/2) takes the values
f33, (k,0,0, )/k =0 5c66 . and p„„(0,k,0)/k 2 = (1.2-
3.1)c66 (depending on b), cf. Figs. Il and II2 in Ref. 6.
Since c66 appears in the denominators in (5) and (10),
and since mainly k& values near the BZ boundary con-
tribute to these integrals, this correction approximately
doubles (u ) and ( y ).

(d) The elastic response of the FLL to a shear stress
becomes nonlinear (softens) at rather small strains
y= 0.02 to 0.03.

(e) When plastic deformation sets in the FLL softens
further, mainly because screw dislocations' ' (oriented
perpendicular to the FL's) can move freely along the
FL's (they feel no Peierls potential).

All these sects tend to decrease T
Nonlinear elastic effects and the behavior of an entan-

gled or melted FL arrangement in principle may be cal-
culated, at all inductions 0&8 &8 2(T), from the in-
teraction V3(r~, z;r~, z') between vortex line elements
given in Ref. 18. Nelson's model interaction V2(r~;
r&) is the local approximation to this general interaction
and applies if k, & kp„ i.e., if the bending wavelength of
the FL's, 2x/k„exceeds the rather large length
2~~/(I —b) '".

Strong pins are expected to stabilize the FLL and to
increase T . Weak pins should not change the above
discussion of T . Depinning of weak pins of range = g
should occur when &u ) =g, i.e., at temperatures below
T if g & ca and at T= T~ if g & ca, corresponding to
b )7c. Experiments involving vortex-pin interactions
are thus not specific for the determination of T; they
might rather yield the onset of thermally assisted flux
flow' (for small driving force) or flux creep. FLL
melting should be investigated by methods which deter-
mine the FLL structure directly, like small-angle neu-
tron scattering or muon-spin rotation (@+SR). Recently
the @+SR signal (fleld density) has been calculated for
perturbed vortex lattices. '
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Note added. —After this work was submitted I re-
ceived a preprint by Houghton, Pelcovits, and Sudbsl,
who use nonlocal elasticity to derive a similar result for
(tt ), which partly accounts for anisotropy.
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